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Probability plays a ubiquitous role in decision-making through a process in which we use data from groups of past
outcomes to make inferences about new situations. Yet in recent years, many forensic mental health professionals
have become persuaded that overly wide confidence intervals render actuarial risk assessment instruments virtually
useless in individual assessments. If this were true, the mathematical properties of probabilistic judgments would
preclude forensic clinicians from applying group-based findings about risk to individuals. As a consequence,
actuarially based risk estimates might be barred from use in legal proceedings. Using a fictional scenario, I seek to
show how group data have an obvious application to individual decisions. I also explain how misunderstanding the
aims of risk assessment has led to mistakes about how, when, and why group data apply to individual instances.
Although actuarially based statements about individuals’ risk have many pitfalls, confidence intervals pose no barrier
to using actuarial tools derived from group data to improve decision-making about individual instances.
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Over the past two decades, forensic mental health
professionals have developed several actuarial tools
for assessing the risk that an individual will engage in
future criminal or aggressive behavior.1–4 An actuar-
ial risk assessment instrument (ARAI5) implements a
procedure for obtaining, weighting, and combining a
relatively small number of prespecified items to yield
a numerical judgment concerning the probability of
future violence. The empirical underpinnings of
these algorithms and probability judgments come
from studies of reference groups in which the same
data items and outcomes were gathered and
evaluated.

ARAIs have received much criticism. By their very
design, they depend on relationships established in
specific populations at specific times in the past, and
these relationships may not apply, or may not apply

in exactly the same way, to future populations living
in different social contexts and circumstances.6,7 The
creators of some ARAIs recommend that evaluators
accept their risk estimates rigidly (e.g., Ref. 8, p 182),
without allowing for the potential presence of other
factors with clear relationships to risk that “a prudent
evaluator will always consider” (Ref. 9, p 3). Practic-
ing clinicians can be tempted by the apparent defin-
itiveness of numerical values to apply ARAIs uncrit-
ically or beyond their limited areas of established
application, with results that can be misleading and
prejudicial in legal contexts.10–12

The criticism of ARAIs that has aroused the most
professional consternation in recent years involves a
“controversy [that] relates to the applicability of
group-derived risk estimates to an individual case”
(Ref. 7, p 180). The controversy stems from mathe-
matical claims set out in three publications by Hart,
Cooke, and Michie (HCM), that the confidence in-
tervals (CIs) for individual risk estimates are so wide
“as to render risk estimates virtually meaningless”
(Ref. 5, p s60). HCM initially made their case5 using
previously published data for the Violence Risk As-
sessment Guide (VRAG)8 and the STATIC-99.9
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More recently, Hart and Cooke used logistic regres-
sion methods to conclude that ARAIs cannot “esti-
mate the specific probability or absolute likelihood of
future violence with any reasonable degree of preci-
sion or certainty” (Ref. 13, p 81). If correct, this
conclusion would represent a “brick wall limiting
predictive accuracy at the individual level” (as one
commentator put it14). Hart and Cooke concluded
that “it is difficult to understand how ARAIs can be
found legally admissible under Daubert or similar
criteria . . . when the margins of error for individual
risk estimates made using the tests are large, un-
known, or incalculable” (Ref. 13, p 97).

Critics15 have pointed out that the assertions of
Hart and colleagues imply that people are mistaken
when they do things that seem perfectly logical and
rational. Yet the HCM argument has perplexed or
persuaded many psychologists and psychiatrists. For
example, DeClue and Zavodny have advised forensic
mental health professionals not to report estimates of
individual risk because “Hart and Cooke persua-
sively show that the lack of precision is not a limita-
tion in one sample or one tool, but is endemic to
attempts to make such predictions about individu-
als” (Ref. 16, p 149).

There are many good reasons for not making
ARAI-based statements about individuals’ risk of re-
cidivism, but the mathematical argument offered by
HCM is not one of them. The HCM argument errs
in assuming implicitly that the purpose of risk assess-
ment and probabilistic judgment is to make a predic-
tion of something. Usually, however, we assess prob-
abilities and risks to decide what to do, given the
information we have, when the outcome is uncer-
tain. Once this main purpose is clarified, the prob-
lems with the HCM argument become easier to see.

In this article, I summarize Hart and Cooke’s most
recent publication,13 which they regard as an im-
provement on their earlier statements of the HCM
thesis. Then, using a data set discussed by HCM, I
describe a hypothetical betting scenario to convince
readers that useful risk estimates (or probabilities) for
individual instances flow naturally and obviously
from information about groups of outcomes. Having
convinced readers that it is practical and sensible to
use group-derived probabilities for decisions about
individual instances, I examine several key assertions
by HCM to explain where their notions were valid
and where their mathematical assertions led them
astray.

The HCM Argument

As Hart and Cooke explain, ARAIs are tools “de-
signed to estimate the likelihood of future criminal or
violent behavior” (Ref. 13 13, p 81) and to “make
individual risk estimates” (p 83) of the form “the risk
that Jones will commit future violence is similar to
the risk of people” (p 82) in a group with character-
istics similar to those of Jones. Not all members of a
group look or behave alike, however. HCM therefore
“tried to distinguish between the precision of risk
estimates at the aggregate or group level versus pre-
cision at the individual level” (p 83).

Suppose one draws a random sample of size n from a
much larger group of persons, some of whom carry a
particular trait. One can then estimate the proportion of
persons in the group who have the trait by counting the
number of persons in the sample with the trait, then
dividing by n. “Like all sample statistics,” state Hart and
Cooke, “the proportion estimated is associated with a
degree of uncertainty, or ‘margin of error’” (Ref. 13, p
83). The size of the error depends, in part, on the size of
n; the larger n is, the smaller the calculated margin of
error, and vice versa.

To make statements about whether an individual
from the group has the trait, say Hart and Cooke, one
might want “to calculate the margin of error for in-
dividual propensities inferred from group risk esti-
mates” (Ref. 13, pp 84 –5). In their first article,
HCM “employed an ad hoc procedure” to estimate a
confidence interval for this individual propensity:
they chose a formula developed by Wilson17 and set
n � 1 to calculate the precision of risk estimates for
individuals. The resulting intervals were so broad as
to encompass most of the possible 0-to-1 probability
range, leading HCM to conclude that ARAIs “ap-
peared to have some (albeit weak) predictive validity
at the group level,” but “the margins of error for
individual risk estimates made using ARAIs are either
large, unknown, or incalculable” (Ref. 13, p 85).

In response to what HCM interpreted as criti-
cisms of their “ad hoc procedure,” Cooke and
Michie18 used multivariate logistic regression “to
predict the probability of a categorical outcome vari-
able” (Ref. 13, p 86). They produced what they in-
terpreted as prediction intervals and found that “the
corresponding precision of individual probability es-
timates for offenders . . . was very low” (Ref. 13, p
86), with values again spanning nearly the entire pos-
sible 0-to-1 probability range.
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In the third article, Hart and Cooke19 used four
item scores on the Sexual Violence Risk-20 adminis-
tered to 90 sex offenders as the independent variables
in a logistic regression “to evaluate the precision of
individual risk estimates [here, of sex offense recidi-
vism] made using ARAIs” (Ref. 13, p 88). They then
generated 90 “individual risk estimates and their
margins of error” (i.e., a 95 percent confidence inter-
val for each individual’s risk estimate). These inter-
vals “overlapped completely” within the low- and
high-risk groups, “and almost completely across
groups save for a handful of cases . . . . These find-
ings clearly illustrate that it was virtually impossible
to make meaningful distinctions among subjects
based on individual risk estimates made using ARAI
scores” (Ref. 13, p 93). Hart and Cooke concluded
that ARAIs are mathematically incapable of “esti-
mat[ing] the specific probability or absolute likeli-
hood that an individual person will commit violence
in the future with any reasonable degree of precision
or certainty” (Ref. 13, p 95).

Were HCM correct? To answer this, let us place
some group data used by HCM5 in a concrete (but
hypothetical) context to see whether such data can
yield probabilities precise enough to prove useful in
individual instances.

Aunt Dorothy’s Bequest

The morning after their Aunt Dorothy’s funeral,
her surviving kin—nephews Jim and Steve, and
nieces Kathy and Mary—sat at Dorothy’s kitchen
table as Jim, the executor of Dorothy’s estate, read
provisions of their late aunt’s will. After covering

disposition of major financial assets and other items,
Jim read this paragraph:

I hereby bequeath my penny collection to my nieces Kathy
and Mary, on condition that, during the six months after
my death, they will honor my memory and amuse them-
selves by using the collection to engage in low-stakes games
of chance.

Dorothy’s penny collection occupied nine large
jars with labels indicating that the contents of each
were collected in one of the nine years before Doro-
thy’s death. Kathy and Mary decided that for the
next half year, they would make small bets on
whether individual pennies drawn from the collec-
tion came from the Philadelphia or the Denver mint.
(Denver pennies bear a D just below the year of mint-
age; pennies minted in Philadelphia have no letter
below the year.)

Each evening over the next six months, Steve,
Kathy, and Mary held three-way phone calls during
which Steve took a jar, mixed its contents thor-
oughly, reached in blindly, drew a penny, and held it
while Kathy and Mary used the following betting
process:

1. The sisters took turns naming a price for a
ticket like the one shown in Figure 1 that paid
$1.00 for a Denver penny, but nothing other-
wise. (Prices in fractional cents were allowed.)

2. After one sister set the price, the other sister
announced whether she would buy or sell the
ticket. Then Steve announced the outcome (D or
no D).

3. Six such bets occurred each evening, with
Mary and Kathy each naming three prices, and

Figure 1. Ticket of the type bought and sold by Mary and Kathy as they bet on outcomes of penny drawings.
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after determining the result of each bet, Steve
returned the penny to the jar from which he had
drawn it.

From the outset, Kathy and Mary played only for
bragging rights; rather than keep the money, they
planned to use their betting proceeds to buy dinner
for everyone after six months.

Before the betting started, Jim had told Steve,
“You know, Dorothy mentioned something about
the penny collection a few months ago. When she
started collecting the pennies, almost all of them had
Denver mint marks. But over the nine years, Denver
pennies became less and less common. When you
draw each penny, tell Kathy and Mary which jar it
came from before they place their bets. It might affect
the betting odds that they agree on.” Steve told Kathy
what Dorothy had said, but he forgot to tell Mary.
So, although both sisters heard which jars each of the
pennies came from, only Kathy knew about the trend
her aunt had observed.

Fifteen weeks and 103 phone calls later, 618 bets
had taken place. From the outset, Kathy and Mary
kept track of the drawings’ results and accumulated
the data shown in the first three columns of Table 1.
The first column, labeled y, indicates how many years
(y � {1, 2, . . . , 9}) before Dorothy’s death the jar’s
pennies were collected. The second column, labeled
r, shows the number of Denver pennies observed,
and the third column, labeled n, shows the number
of draws from each jar. (By amazing coincidence, the
numbers of Denver pennies and draws for each year
equal the seven-year violent recidivism rates and
numbers of recidivists in each risk category as re-

ported by Quinsey and colleagues (Ref. 20, p 240)
and by HCM.5)

Throughout the betting, both sisters examined
their data to see what they could reasonably say about
the proportion of Denver pennies in Jar y (y � {1,
2, . . . , 9}), given the outcomes thus far. Before we
consider each sister’s analysis after 618 bets, let’s
think about their aims. Both sisters sought to deter-
mine as precisely as possible what proportion of each
jar’s pennies came from the Denver mint, because
this proportion would equal the probability of draw-
ing a Denver penny. Notice also that this probability
would equal the price in dollars at which each sister
would be indifferent between buying and selling the
ticket and the price that she would propose for the
ticket. Why?

Suppose it was Mary’s turn to name a price for a
penny from Jar 4, and suppose that her best estimate
(based on the data she had accumulated so far) was that
20 percent of a jar’s pennies came from the Denver
mint. If Mary named a price above $0.20, she would
know that by selling the ticket, Kathy would gain a
small advantage; if Mary named a price below $0.20,
Kathy could buy the ticket and gain an advantage. So,
unless Mary knew that Kathy was making systematic
errors in estimating the proportion of Denver pennies
in the jars, she could avoid giving Kathy an advantage
only by naming a price equal to her best estimate of the
proportion. Because Kathy was in exactly the same po-
sition as Mary, she also adopted the strategy of price
equals best estimate of the proportion.

Now, neither sister knew exactly how the other
was estimating proportions, but they had in fact used

Table 1 Results and Inferences About �y, the Proportion of Denver Pennies in Jar y, After n Draws (With Replacement) From Each Jar in the
Penny Collection

y r n

�̂y and 95% Credible Intervals

Mary’s Estimates Kathy’s Estimates*

1 0 11 0.042 �0.000–0.200� 0.039 �0.022–0.063�

2 6 71 0.090 �0.036–0.166� 0.068 �0.044–0.010�

3 12 101 0.123 �0.067–0.192� 0.118 �0.086–0.155�

4 19 111 0.174 �0.110–0.249� 0.197 �0.159–0.237�

5 41 116 0.355 �0.271–0.443� 0.310 �0.270–0.352�

6 42 96 0.438 �0.341–0.537� 0.453 �0.401–0.505�

7 41 74 0.553 �0.441–0.663� 0.603 �0.535–0.670�

8 22 29 0.750 �0.584–0.885� 0.736 �0.656–0.806�

9 9 9 0.950 �0.762–1.000� 0.835 �0.761–0.895�

r, number of Denver Pennies; y, number of years before Dorothy’s death.
* Inferences are based on 25,000 iterations of two WinBUGS chains that converged rapidly (after 100 updates). The first 5,000 values from
each chain were discarded, and inferences were made on the final 20,000 values in each chain, thinned at an interval of 20.
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different procedures. Because Mary had not heard
Dorothy’s statements to Jim about the declining fre-
quency of Denver pennies, Mary treated the results
from each jar as independent of one another. Using y
subscripts to designate the jars (again, y� {1, 2, . . . , 9}),
Mary could simply have estimated each year’s Denver-

penny proportion �y as �̂y �
ry

ny
, the number of

Denver pennies, ry, divided by the total number of
drawings, ny, from Jar y, in the belief that this unbiased
value21 should represent her expectation for future
outcomes.

Mary took a different approach, however. She real-
ized first that having observed no Denver pennies in 11
draws from Jar 1 did not necessarily mean that the jar
contained no Denver pennies, so that setting a price of
$0.00 seemed illogical. Similarly, getting nine Denver
pennies in the first nine draws from Jar 9 did not imply
that all the pennies in that jar came from Denver and
that the fair ticket price must be $1.00. Mary also knew,
however, that the data from each jar placed some nu-
merical restrictions on what she should believe about
the jar’s likely contents. Therefore, Mary was interested
in both the best single-number estimates for �y and in
knowing what her data should lead her to conclude
about the plausible range of values for �y. The technical
background for Mary’s reasoning and calculations ap-
pears in Appendix I, and her estimates and 95 percent
credible intervals appear in the fourth and fifth columns
of Table 1.

A different perspective informed Kathy’s Bayesian
analysis. She (based on Dorothy’s statement) be-
lieved that the proportions of Denver pennies in each
jar would be correlated with and therefore linked
mathematically to y. Appendix II describes the details
of Kathy’s calculations, and her estimates and 95
percent credible intervals results appear in the sixth
and seventh columns of Table 1.

Because the sisters began with different prior as-
sumptions about the same data, their estimates of �y for
each jar were not identical. After 111 drawings from Jar
4, for example, Mary’s estimates left her indifferent
about buying or selling a $0.17 ticket that paid $1.00
upon her drawing a Denver penny. Kathy would have
bought such a ticket gladly, however, because she was
fairly confident that �4 was more than .17.

An important conclusion from this discussion is
that Mary and Kathy have posited different, subjec-
tive probabilities22–25 regarding the next draw from

Jar 4. Realizing that probability is subjective makes it
reasonable to utter a phrase such as “Kathy’s proba-
bility of drawing a Denver penny from Jar 4,” be-
cause the phrase refers not to the contents of Jar 4,
but to Kathy’s degree of belief about the likelihood of
drawing a Denver penny from that jar. The sisters’
subjective probabilities determined how they pro-
posed and accepted wagers, and their betting behav-
ior represented a concrete illustration of the follow-
ing general principle: “probability . . . is a rate at
which an individual is willing to bet on the occur-
rence of an event. Betting rates are the primitive mea-
surements that reveal your probabilities or someone
else’s probabilities, which are the only probabilities
that really exist” (Ref. 26, p 90).

The preceding paragraphs let us distinguish
among related but different quantities that the sisters
might describe, based on their assumptions and the
available data:

1. Asked to describe �y, the proportion of Den-
ver pennies in the jar from year y, each sister
might respond with her single-number estimate
of �y listed in Table 1 (that is, her expectation
based on the methods described in the appendi-
ces), or she might instead say that she was 95
percent sure that �y lay within the intervals
shown in Table 1.

2. Asked to describe the proportion of pennies
that would have Denver mint marks were a large
number of subsequent drawings to occur, the
sisters might give similar answers (i.e., either re-
porting the single-number values for �̂y or the
95% ranges that describe their beliefs).

3. Asked about the price of a Figure 1–type ticket
that would leave them indifferent between buy-
ing and selling it, the sisters would use the single-
number values for �̂y listed in Table 1. These
values are the sisters’ expectations for each of the
nine jars, the bases for their decisions about bets,
and their single-event probabilities that the next
penny from Jar y will bear a Denver mint mark.

4. Using her data in Table 1, Kathy might say,
“The probability of drawing a Denver penny
from Jar 4 is 16 to 24 percent.” Though this
assertion seems to refer to a single instance (the
next drawing), Kathy’s statement implicitly re-
fers either to (a) a proportion of the jar’s con-
tents, or to (b) a plausible frequency for a certain
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type of event over the long run. If (a) is what
Kathy intends, the assertion means, “Based on
the data and my background assumptions, I’m
pretty sure that 16 to 24 percent of pennies in Jar
4 bear Denver mint marks.” If (b) is Kathy’s in-
tention, her assertion means, “In a very large se-
ries of drawings, I’m 95 percent sure that 16 to
24 percent of the pennies will bear Denver mint
marks.”

Responding to HCM

In evaluating the penny data, the sisters used
Bayesian statistical methods that are known to pro-
duce results very close to those yielded by the tradi-
tional, frequentist methods used by Hart, Cooke,
and Michie in their 2007 and 2013 publications. If
the mathematical arguments of HCM are correct,
however, then the sisters, as Hart and Cooke suggest,
“should consider whether it is best to give up alto-
gether on the idea of calculating probability estimates
of” drawing Denver pennies from each jar (see Ref.
13, p 98).

One point of telling the penny-betting story was
to recast the calculations of Hart, Michie, and
Cooke5 in a context that makes it easy to see the
relevance of group data to individual decisions. After
618 drawings, Mary would be foolish to think she
knew next to nothing about the jars’ contents or
about how to establish a price for a ticket, the payoff
of which depended on the next draw from Jar y.
Mary’s Bayesian analyses of the penny data yielded
virtually the same group data (i.e., the same 95%
intervals) as those that Hart, Michie, and Cooke re-
ported in their Table 1,5 and Mary felt 95 percent
sure that her intervals contained the true proportion
of Denver pennies in each jar. For purposes of mak-
ing a betting decision, however, the relevant proba-
bility for Mary was the value at which she would be
indifferent about buying or selling a ticket like the
one shown in Figure 1. This value should equal her
best point estimate of proportion of pennies that
came from Denver.

Thinking about probabilities as expressions of be-
liefs that can be the basis for decisions helps one to
avoid a mistake that HCM make in their discussion
of group data. They ask readers to imagine a game of
chance and write, “Suppose that Dealer, from an
ordinary deck of cards, deals one to Player. If the card
is a diamond, Player loses; but if the card is one of the
other three suits, Player wins. After each deal, Dealer

replaces the card and shuffles the deck” (Ref. 5, p
s62). Over 10,000 games, say Hart and colleagues,
Player can be 95 percent confident he will win 74 to
76 percent of the games. But if Dealer and Player
play this game just once, “the estimated probabil-
ity of a win is still 75 percent but the 95 percent CI
is 12 to 99 percent. The simplest interpretation of
this result is that Player cannot be highly confident
that he will win— or lose— on a given deal” (Ref.
5, p s62).

Indeed, Player should not be confident, but not
because of the interval that Hart and colleagues pro-
vided, which is what Player would calculate (using
Wilson’s method) for plausible values of the deck’s
nondiamond proportion if Player began knowing
nothing about decks of cards and learned that in a
single draw, one-fourth of the cards was a diamond.
Leaving aside the impossibility of such a draw, HCM
elided the distinction between one’s confidence
about a single yes-or-no outcome and one’s proba-
bility concerning that outcome. Player should know
that in a standard 52-card deck, three-fourths of the
cards are not diamonds. If the payoff for a nondia-
mond is $1.00, the fair price for each round of the
Dealer-Player game described above is $0.75, be-
cause probability of getting a nondiamond on any
instance is .75. The problem with Hart and col-
leagues evaluation of ARAI data5 is not their “ad hoc
procedure” for interpreting information about a
group of outcomes, but their misuse of Wilson’s
method. Their interval calculations effectively throw
out all the information about each group, just as
Player would be doing if he threw out his knowledge
of 52-card decks, drew one card, and learned (some-
how) that it was one-fourth a diamond.

Kathy’s Bayesian analysis used the statistical pro-
cedure (logistic regression) that Hart and Cooke13

employed to model probabilities for individuals.
Kathy’s credible intervals for each jar’s Denver-
penny proportions were narrower than those that
Hart and Cooke13 described, in part because Kathy
used a larger data set. Had her data set been smaller,
Kathy’s credible intervals would have been wider, but
her single-value probability estimates still would have
helped her to make decisions about bets.

The HCM articles often refer to a predicted prob-
ability or an estimated probability, and they produce
calculations which, they asserted, show that these
entities are too imprecise to be useful. But what
HCM tried to calculate is puzzling. To see why,
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imagine a lunchtime discussion among Kathy, Mary,
and their longtime friend Jane, who questioned
whether they could apply their group data to indi-
vidual bets.

“For the jars from which Steve has drawn lots of
pennies,” said Jane, “you know within fairly narrow
intervals what fraction of Denver pennies you’d get
in a very large number of future drawings from the
jar. Those intervals are group results, however. On
any individual penny drawing, you cannot predict
the outcome with much confidence.”

“We aren’t trying to predict what will happen on
any particular draw,” replied Mary. “We’re simply
setting prices and deciding how to bet on each
drawing.”

“The probabilities we’ve calculated aren’t predic-
tions,” added Kathy. “They represent degrees of be-
lief based on rational mathematical strategies and our
knowledge and experience. We don’t know how
many pennies are in each jar or how many came from
Denver, but we’re implementing the best possible
strategy based on what we do know.”

“But you still can’t tell me the precise probability
you predict for the next penny, nor can you give me
a confidence interval for your prediction,” protested
Jane.

“We aren’t trying to predict a probability, or any-
thing else!” responded Mary. “I don’t even under-
stand what you mean.”

“Maybe this will help,” offered Kathy. “We aren’t
trying to predict anything: neither the outcome of
the next penny drawing, nor our probability for that
drawing. Probabilities aren’t something we predict;
they are degrees of belief that we ascribe to possible
outcomes. Based on our data, we have formed beliefs
about the intervals within which each jar’s Denver
proportion probably lies. But for purposes of making
bets, our single-value estimates of the jars’ propor-
tions of Denver pennies are our probabilities for
drawing a Denver penny. If I say my probability for
getting a Denver penny is .20, that means I’m indif-
ferent between selling or buying a $0.20 ticket that
pays $1.00 if the next penny has a D mint mark.”

Hart and Cooke believe that “the state of knowl-
edge is arguably more advanced” in medicine than in
psychology, yet “it is not common for physicians to
give individual risk estimates” (Ref. 13, p 98) for
outcomes. They quoted Henderson and Keiding,27

who believe that while “‘models and statistical indi-
ces can be useful at the group or population

level, . . . human survival is so uncertain that even
the best statistical analysis cannot provide single-
number predictions of real use for individual pa-
tients’” (Ref. 13, p 99, quoting Ref. 27, p 703).

But it’s easy to think of counterexamples. Suppose
a 50-year-old man learns that half of people with his
diagnosis die in five years. He would find this infor-
mation very useful in deciding whether to purchase
an annuity that would begin payouts only after he
reached his 65th birthday. When you purchase in-
surance coverage, you may not tell yourself that
you’re making a bet, but that’s what insurance is, and
insurers find actuarial data very useful in deciding
whether to offer you coverage and what your pre-
mium will be.

Hart and Cooke also state that “the definition of
individual risk estimate used by ARAIs assumes that
every person has a propensity for violence that is
stable, dispositional, or trait-like” (Ref. 13, p 87).
This characterization is incorrect for reasons that the
penny story helps us understand. Each penny is
unique: it has characteristics (e.g., its position in the
jar) that make it theoretically distinguishable from
other pennies and that influence whether it is the
next one drawn by Steve. Other characteristics (e.g.,
mintage year) affect a penny’s likelihood of coming
from Denver. When the sisters set prices and made
bets, however, the only information they had about
each penny was its source jar, so the pennies’ other
characteristics could not affect their probability esti-
mates. Similarly, if all one knew about an individual
was his Static-99R score and that he came from a
population for which the Static-99R data and rates
were relevant, the individual’s Static-99R score
would be the best and the only basis for making a
probabilistic judgment about his future behavior.
This is true even though many factors not considered
by the Static-99R (e.g., employment status, sub-
stance use, and family relationships) affect a sex of-
fender’s likelihood of recidivism.

Making Predictions Versus Assessing Risks

Making individual predictions is neither the aim
of ARAIs nor the purpose for which they are de-
signed. As the term actuarial risk assessment instru-
ment suggests, a validated actuarial tool provides a
numerical value for the risk of an event.

In states that authorize civil commitment of so-
called sexual predators (see, for example, Ref. 28),
courts typically solicit expert testimony relevant to

Mossman

99Volume 43, Number 1, 2015



whether an individual is “likely to engage in acts of
sexual violence” if not confined. Courts disagree
about exactly what numerical value is entailed by
the word “likely.”29 –31 Yet under a plain-English
interpretation as well as the interpretations that
U.S. courts have provided, this phrase requests a
statement regarding an individual’s probability of
engaging in a certain kind of behavior, not a
prediction.

When Kathy and Mary bet on Dorothy’s pennies,
the results of previous drawings from a particular jar
were obviously relevant to the likelihood that the
next penny from that jar would bear a Denver mint
mark. In providing so-called norms—for example,
rates of recidivism or violent acts—for translating
ARAI scores to probabilities of recidivism, ARAI de-
signers are saying that their source data (the bases for
the norms) are as relevant to any evaluee as are the
source data used by Mary and Kathy to calculate
probabilities of drawing Denver pennies.

This claim is questionable. An ARAI may do
equally well at ranking the risks of individuals from
two populations, yet have probabilities associated
with particular scores that differ because the popula-
tions’ overall base rates differ.6,32 Helmus and col-
leagues33 and Singh and colleagues7 have shown that
the offending rates associated with particular ARAIs
scores differ across locales, but this should not sur-
prise anyone. Social, economic, and political condi-
tions in different places are likely to influence inter-
personal behaviors such as acting violently or
committing a sex offense.

Thus, one can disagree with the HCM mathe-
matical argument, yet agree with Hart and Cooke
that “it is arbitrary and therefore inappropriate to
rely solely on a statistical algorithm . . . profes-
sionals [should] recognize that their decisions ul-
timately require consideration of the totality of
circumstances—not just the items of a particular
test” (Ref. 13, p 98). Sensible exponents of actu-
arially validated risk assessment know that factors
besides those considered by the instrument may
influence risk, but because actuarially based risk
assessment methods typically outperform other
judgment methods (especially unstructured clini-
cal judgment), the onus rests with those who pro-
pose adjusting estimates to prove that their adjust-
ments yield results that are superior to those based
on actuarial judgment alone.

Final Comments

The term probability causes confusion because it
has many uses. Readers interested in exploring these
uses would do well to start with the recent article by
Buchanan,34 which provides a short, elegant discus-
sion of probability in the context of forensic risk
assessment.

Thinking carefully about probability involves
thinking carefully about numbers, and many people,
including judges and jurors, have trouble under-
standing numerical information and using it ratio-
nally. Even numerically sophisticated people can get
confused by the statistics that describe probabilities,
estimates of proportions, and risks of events, and also
by the relationships between these mathematical
quantities, people’s predictions about individual
events, and optimal decisions about what to do in
uncertain individual circumstances.

To make these relationships clearer and to dispel
the misunderstandings generated by the well-
intended efforts of HCM, I have explicated the rela-
tionship between rational use of data and probabili-
ties with a story about betting. Some people object to
betting on moral grounds,35 and some mental health
professionals may disapprove of describing psychole-
gal matters as though the clinicians involved were
making bets,36 but since the 17th century, the argu-
ments for deriving and illustrating basic principles of
probability have used gambling as a standard meta-
phor for explaining those principles.37

I have used the same metaphor to give readers an
intuitive feel for why HCM’s mathematical analyses
must contain errors. Some readers may take offense
at legal schemes that impose confinement based on
principles that govern rational betting. If you are one
of those readers, I agree with you, but such opinions
reflect moral or legal positions about the proper basis
for confining people, not mathematical arguments
about the precision of risk assessments.

Appendix I
Mary approached the problem of estimating from a Bayesian

perspective. She sought to establish a probability distribution
p(�y�y, ry, ny) for each jar, based on her data. She treated the series
of penny drawings as a set of Bernoulli trials—that is, as indepen-
dent, random experiments with exactly two possible outcomes—in
which the probability of a Denver penny was the same every time a
drawing occurred. Starting with the Jeffreys’ prior for binomial
data from Bernoulli trials, Mary’s posterior distributions for p(�y�y,
ry, ny), after having observing ry Denver pennies in ny draws from
each jar, were Beta(ry � 1⁄2, ny – ry � 1⁄2). The Jeffreys’ prior for beta
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distributions produces intervals with good coverage properties
from a traditional (frequentist) statistical standpoint.38 (For fur-
ther explanations of the rationale for using this prior and examples
applied to psychiatric contexts, see Refs. 39,40.)

The expectation for a Beta(�,�) distribution on the interval
[0,1] is �/(���). In Table 1, Mary’s Bayesian estimates for �y

reflect this calculation, so they differ a bit from what calculating

estimates of �y as �̂y �
ry

ny
would yield. Because Mary considered

and used the data to assign Bayesian probability distributions to �y,
then having observed (for example) that r2 � 6 and n2 � 71, she
could say, “I am 95 percent sure that �2 lies between .036 and
.166.”

Appendix II
From among several candidates for link functions (see Ref. 41,

§ 6.5), Kathy chose this logistic regression model to fit the data:

ry � Binomial��y, ny�, logit��y� � � � �� y � y��

The first part of Kathy’s model states that ry, the number of Denver
pennies out of ny drawings from Jar y, results from a series of
Bernoulli trials that follow (or are distributed as) a binomial distri-
bution, where �y is the actual (but unobserved) proportion of
Denver pennies in Jar y. (If taken by itself, this part of Kathy’s
model would be the same as Mary’s.) The second part posits a
standard logistic model in which y (years before death) is the inde-
pendent variable and y� (the mean years in the data sample; here, y� �
3.74) aids in convergence because it reduces the dependence of �
on � (see Ref. 41, p 115). Kathy’s model was implemented using
WinBUGS, a free statistical software program for effecting Bayes-
ian analyses using Markov chain Monte Carlo methods.41 For
additional details, see the footnote to Table 1.
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