Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Huntington disease: natural history, biomarkers and prospects for therapeutics

Key Points

  • No disease-modifying treatments are currently available for Huntington disease (HD), but clinical trials of potential compounds are imminent; identification of suitable biomarkers to assess therapeutic efficacy is a research priority

  • Quantifiable measures of patient function, including motor and cognitive assessments, have shown disease-related change in early HD but still lack sensitivity in premanifest cohorts

  • Structural imaging measures such as striatal atrophy show the largest effect sizes both cross-sectionally and longitudinally, and have the potential to track disease progression even in the premanifest period

  • Functional MRI and magnetic resonance spectroscopy are also sensitive for detecting change, but have not yet been well-validated longitudinally

  • PET imaging is quantitative and shows sensitivity to early premanifest disease, and may be useful longitudinally, but has the disadvantage of being expensive and complex

  • Biochemical assays of relevant molecules provide a more direct reflection of disease mechanisms; such measures have not been fully validated, and future work will focus on their development

Abstract

Huntington disease (HD) can be seen as a model neurodegenerative disorder, in that it is caused by a single genetic mutation and is amenable to predictive genetic testing, with estimation of years to predicted onset, enabling the entire range of disease natural history to be studied. Structural neuroimaging biomarkers show that progressive regional brain atrophy begins many years before the emergence of diagnosable signs and symptoms of HD, and continues steadily during the symptomatic or 'manifest' period. The continued development of functional, neurochemical and other biomarkers raises hopes that these biomarkers might be useful for future trials of disease-modifying therapeutics to delay the onset and slow the progression of HD. Such advances could herald a new era of personalized preventive therapeutics. We describe the natural history of HD, including the timing of emergence of motor, cognitive and emotional impairments, and the techniques that are used to assess these features. Building on this information, we review recent progress in the development of biomarkers for HD, and potential future roles of these biomarkers in clinical trials.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Natural history of clinical HD, and hypothesized changes in imaging biomarkers.
Figure 2: Longitudinal data from TRACK-HD.
Figure 3: Change with CAP score of clinical and imaging variables: data from TRACK-HD.
Figure 4: Change in clinical features: data from COHORT and REGISTRY databases.
Figure 5: Schematic diagram of Huntington disease cellular pathogenesis.
Figure 6: Conceptual diagram of possible circuitry-related degeneration in Huntington disease.

Similar content being viewed by others

References

  1. Squitieri, F. & Jankovic, J. Huntington's disease: how intermediate are intermediate repeat lengths? Mov. Disord. 27, 1714–1717 (2012).

    CAS  PubMed  Google Scholar 

  2. Seong, I. S. et al. HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism. Hum. Mol. Genet. 14, 2871–2880 (2005).

    CAS  PubMed  Google Scholar 

  3. Huntington, G. On chorea. Med. Surg. Reporter 26, 320–321 (1872).

    Google Scholar 

  4. Folstein, S. E. The psychopathology of Huntington's disease. J. Nerv. Ment. Dis. 177, 645 (1989).

    Google Scholar 

  5. [No authors listed] Unified Huntington's disease rating scale: reliability and consistency. Huntington Study Group. Mov. Disord. 11, 136–142 (1996).

  6. Hogarth, P. et al. Interrater agreement in the assessment of motor manifestations of Huntington's disease. Mov. Disord. 20, 293–297 (2005).

    PubMed  Google Scholar 

  7. Weir, D. W., Sturrock, A. & Leavitt, B. R. Development of biomarkers for Huntington's disease. Lancet Neurol. 10, 573–590 (2011).

    CAS  PubMed  Google Scholar 

  8. Shoulson, I. & Fahn, S. Huntington disease: clinical care and evaluation. Neurology 29, 1–3 (1979).

    CAS  PubMed  Google Scholar 

  9. Shoulson, I. Huntington disease: functional capacities in patients treated with neuroleptic and antidepressant drugs. Neurology 31, 1333–1335 (1981).

    CAS  PubMed  Google Scholar 

  10. [No authors listed] A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group. Cell 72, 971–983 (1993).

    Google Scholar 

  11. Wexler, N. S. et al. Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington's disease age of onset. Proc. Natl Acad. Sci. USA 101, 3498–3503 (2004).

    CAS  PubMed  Google Scholar 

  12. Paulsen, J. S. et al. Detection of Huntington's disease decades before diagnosis: the Predict-HD study. J. Neurol. Neurosurg. Psychiatry 79, 874–880 (2008).

    CAS  PubMed  Google Scholar 

  13. Tabrizi, S. J. et al. Biological and clinical manifestations of Huntington's disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol. 8, 791–801 (2009).

    PubMed  PubMed Central  Google Scholar 

  14. Tabrizi, S. J. et al. Biological and clinical changes in premanifest and early stage Huntington's disease in the TRACK-HD study: the 12-month longitudinal analysis. Lancet Neurol. 10, 31–42 (2011).

    PubMed  Google Scholar 

  15. Tabrizi, S. J. et al. Potential endpoints for clinical trials in premanifest and early Huntington's disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurol. 11, 42–53 (2012).

    PubMed  Google Scholar 

  16. Tabrizi, S. J. et al. Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington's disease in the TRACK-HD study: analysis of 36-month observational data. Lancet Neurol. 12, 637–649 (2013).

    PubMed  Google Scholar 

  17. Orth, M. et al. Observing Huntington's disease: the European Huntington's Disease Network's REGISTRY. J. Neurol. Neurosurg. Psychiatry 82, 1409–1412 (2010).

    PubMed  Google Scholar 

  18. Rosenblatt, A. et al. Predictors of neuropathological severity in 100 patients with Huntington's disease. Ann. Neurol. 54, 488–493 (2003).

    PubMed  Google Scholar 

  19. Langbehn, D. R., Hayden, M. R. & Paulsen, J. S. CAG-repeat length and the age of onset in Huntington disease (HD): a review and validation study of statistical approaches. Am. J. Med. Genet. B Neuropsychiatr. Genet. 153B, 397–408 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Rosenblatt, A. et al. Age, CAG repeat length, and clinical progression in Huntington's disease. Mov. Disord. 27, 272–276 (2012).

    PubMed  Google Scholar 

  21. Penney, J. B. Jr, Vonsattel, J. P., MacDonald, M. E., Gusella, J. F. & Myers, R. H. CAG repeat number governs the development rate of pathology in Huntington's disease. Ann. Neurol. 41, 689–692 (1997).

    PubMed  Google Scholar 

  22. Zhang, Y. et al. Indexing disease progression at study entry with individuals at-risk for Huntington disease. Am. J. Med. Genet. B Neuropsychiatr. Genet. 156B, 751–763 (2011).

    PubMed  Google Scholar 

  23. Huntington Study Group COHORT Investigators & Dorsey, E. Characterization of a large group of individuals with Huntington disease and their relatives enrolled in the COHORT study. PLoS ONE 7, e29522 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Dorsey, E. R. et al. Natural history of Huntington disease. JAMA Neurol. 70, 1520–1530 (2013).

    PubMed  Google Scholar 

  25. Rosenblatt, A. et al. The association of CAG repeat length with clinical progression in Huntington disease. Neurology 66, 1016–1020 (2006).

    CAS  PubMed  Google Scholar 

  26. Folstein, S. E., Jensen, B., Leigh, R. J. & Folstein, M. F. The measurement of abnormal movement: methods developed for Huntington's disease. Neurobehav. Toxicol. Teratol. 5, 605–609 (1983).

    CAS  PubMed  Google Scholar 

  27. Bechtel, N. et al. Tapping linked to function and structure in premanifest and symptomatic Huntington disease. Neurology 75, 2150–2160 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Reilmann, R. et al. Q-Motor—quantitative motor assessments: potential novel endpoints for clinical trials in pre-manifest and symptomatic Huntington's disease—36 months longitudinal results from the multicenter TRACK-HD study. Basal Ganglia 3, 67–68 (2013).

    Google Scholar 

  29. Reilmann, R. et al. Objective assessment of progression in Huntington's disease: a 3-year follow-up study. Neurology 57, 920–924 (2001).

    CAS  PubMed  Google Scholar 

  30. Reilmann, R. et al. Grasping premanifest Huntington's disease—shaping new endpoints for new trials. Mov. Disord. 25, 2858–2862 (2010).

    PubMed  Google Scholar 

  31. Reilmann, R., Bohlen, S., Kirsten, F., Ringelstein, E. B. & Lange, H. W. Assessment of involuntary choreatic movements in Huntington's disease—toward objective and quantitative measures. Mov. Disord. 26, 2267–2273 (2011).

    PubMed  Google Scholar 

  32. Stout, J. C. et al. Neurocognitive signs in prodromal Huntington disease. Neuropsychology 25, 1–14 (2011).

    PubMed  PubMed Central  Google Scholar 

  33. Stout, J. C. et al. Evaluation of longitudinal 12 and 24 month cognitive outcomes in premanifest and early Huntington's disease. J. Neurol. Neurosurg. Psychiatry 83, 687–694 (2012).

    PubMed  PubMed Central  Google Scholar 

  34. Snowden, J. S., Craufurd, D., Thompson, J. & Neary, D. Psychomotor, executive, and memory function in preclinical Huntington's disease. J. Clin. Exp. Neuropsychol. 24, 133–145 (2002).

    CAS  PubMed  Google Scholar 

  35. Peavy, G. M. et al. Cognitive and functional decline in Huntington's disease: dementia criteria revisited. Mov. Disord. 25, 1163–1169 (2010).

    PubMed  PubMed Central  Google Scholar 

  36. Solomon, A. C. et al. Verbal episodic memory declines prior to diagnosis in Huntington's disease. Neuropsychologia 45, 1767–1776 (2007).

    PubMed  PubMed Central  Google Scholar 

  37. Duff, K. et al. “Frontal” behaviors before the diagnosis of Huntington's disease and their relationship to markers of disease progression: evidence of early lack of awareness. J. Neuropsychiatry Clin. Neurosci. 22, 196–207 (2010).

    PubMed  PubMed Central  Google Scholar 

  38. Thompson, J. C. et al. Longitudinal evaluation of neuropsychiatric symptoms in Huntington's disease. J. Neuropsychiatry Clin. Neurosci. 24, 53–60 (2012).

    PubMed  Google Scholar 

  39. Killoran, A. & Biglan, K. M. Therapeutics in Huntington's disease. Curr. Treat. Options Neurol. http://dx.doi.org/10.1007/s11940-012-0165-x.

  40. Bjorkqvist, M., Wild, E. J. & Tabrizi, S. J. Harnessing immune alterations in neurodegenerative diseases. Neuron 64, 21–24 (2009).

    PubMed  Google Scholar 

  41. Wild, E., Bjorkqvist, M. & Tabrizi, S. J. Immune markers for Huntington's disease? Expert Rev. Neurother. 8, 1779–1781 (2008).

    PubMed  Google Scholar 

  42. Björkqvist, M. et al. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease. J. Exp. Med. 205, 1869–1877 (2008).

    PubMed  PubMed Central  Google Scholar 

  43. Battaglia, G. et al. Early defect of transforming growth factor β1 formation in Huntington's disease. J. Cell. Mol. Med. 15, 555–571 (2011).

    CAS  PubMed  Google Scholar 

  44. Kim, M. Beta conformation of polyglutamine track revealed by a crystal structure of Huntingtin N-terminal region with insertion of three histidine residues. Prion 7, 221–228 (2013).

    PubMed  PubMed Central  Google Scholar 

  45. Bence, N. F., Sampat, R. M. & Kopito, R. R. Impairment of the ubiquitin–proteasome system by protein aggregation. Science 292, 1552–1555 (2001).

    CAS  PubMed  Google Scholar 

  46. Seredenina, T. & Luthi-Carter, R. What have we learned from gene expression profiles in Huntington's disease? Neurobiol. Dis. 45, 83–98 (2012).

    CAS  PubMed  Google Scholar 

  47. Browne, S. E. et al. Oxidative damage and metabolic dysfunction in Huntington's disease: selective vulnerability of the basal ganglia. Ann. Neurol. 41, 646–653 (1997).

    CAS  PubMed  Google Scholar 

  48. Rosenblatt, A. et al. Familial influence on age of onset among siblings with Huntington disease. Am. J. Med. Genet. 105, 399–403 (2001).

    CAS  PubMed  Google Scholar 

  49. Gusella, J. F. & MacDonald, M. E. Huntington's disease: seeing the pathogenic process through a genetic lens. Trends Biochem. Sci. 31, 533–540 (2006).

    CAS  PubMed  Google Scholar 

  50. Lee, J. H. et al. TAA repeat variation in the GRIK2 gene does not influence age at onset in Huntington's disease. Biochem. Biophys. Res. Commun. 424, 404–408 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ramos, E. M. et al. Population stratification may bias analysis of PGC-1α as a modifier of age at Huntington disease motor onset. Hum. Genet. 131, 1833–1840 (2012).

    PubMed  PubMed Central  Google Scholar 

  52. Gayán, J. et al. Genomewide linkage scan reveals novel loci modifying age of onset of Huntington's disease in the Venezuelan HD kindreds. Genet. Epidemiol. 32, 445–453 (2008).

    PubMed  Google Scholar 

  53. Roach, J. C. et al. Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science 328, 636–639 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ross, C. A. & Tabrizi, S. J. Huntington's disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 10, 83–98 (2011).

    CAS  PubMed  Google Scholar 

  55. Guo, Z. et al. Striatal neuronal loss correlates with clinical motor impairment in Huntington's disease. Mov. Disord. 27, 1379–1386 (2012).

    PubMed  PubMed Central  Google Scholar 

  56. Cummings, D. M. et al. Aberrant cortical synaptic plasticity and dopaminergic dysfunction in a mouse model of Huntington's disease. Hum. Mol. Genet. 15, 2856–2868 (2006).

    CAS  PubMed  Google Scholar 

  57. Yamamoto, A., Lucas, J. J. & Hen, R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell 101, 57–66 (2000).

    CAS  PubMed  Google Scholar 

  58. Harper, S. Q. et al. RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model. Proc. Natl Acad. Sci. USA 102, 5820–5825 (2005).

    CAS  PubMed  Google Scholar 

  59. Carroll, J. B. et al. Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the Huntington disease gene/allele-specific silencing of mutant huntingtin. Mol. Ther. 19, 2178–2185 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Jucker, M. & Walker, L. C. Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Ann. Neurol. 70, 532–540 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Georgiou-Karistianis, N., Scahill, R., Tabrizi, S. J., Squitieri, F. & Aylward, E. Structural MRI in Huntington's disease and recommendations for its potential use in clinical trials. Neurosci. Biobehav. Rev. 37, 480–490 (2013).

    PubMed  Google Scholar 

  62. Aylward, E. H. et al. Longitudinal change in basal ganglia volume in patients with Huntington's disease. Neurology 48, 394–399 (1997).

    CAS  PubMed  Google Scholar 

  63. Aylward, E. H. et al. Rate of caudate atrophy in presymptomatic and symptomatic stages of Huntington's disease. Mov. Disord. 15, 552–560 (2000).

    CAS  PubMed  Google Scholar 

  64. Rosas, H. D. et al. Striatal volume loss in HD as measured by MRI and the influence of CAG repeat. Neurology 57, 1025–1028 (2001).

    CAS  PubMed  Google Scholar 

  65. Peinemann, A. et al. Executive dysfunction in early stages of Huntington's disease is associated with striatal and insular atrophy: a neuropsychological and voxel-based morphometric study. J. Neurol. Sci. 239, 11–19 (2005).

    PubMed  Google Scholar 

  66. Ruocco, H. H., Lopes-Cendes, I., Li, L. M., Santos-Silva, M. & Cendes, F. Striatal and extrastriatal atrophy in Huntington's disease and its relationship with length of the CAG repeat. Braz. J. Med. Biol. Res. 39, 1129–1136 (2006).

    CAS  PubMed  Google Scholar 

  67. Henley, S. M. et al. Relationship between CAG repeat length and brain volume in premanifest and early Huntington's disease. J. Neurol. 256, 203–212 (2009).

    PubMed  Google Scholar 

  68. Vandenberghe, W., Demaerel, P., Dom, R. & Maes, F. Diffusion-weighted versus volumetric imaging of the striatum in early symptomatic Huntington disease. J. Neurol. 256, 109–114 (2009).

    PubMed  Google Scholar 

  69. Ginestroni, A. et al. Magnetization transfer MR imaging demonstrates degeneration of the subcortical and cortical gray matter in Huntington disease. AJNR Am. J. Neuroradiol. 31, 1807–1812 (2010).

    CAS  PubMed  Google Scholar 

  70. Sanchez-Castaneda, C. et al. Seeking Huntington disease biomarkers by multimodal, cross-sectional basal ganglia imaging. Hum. Brain Mapp. 34, 1625–1635 (2012).

    PubMed  Google Scholar 

  71. Aylward, E. H. et al. Longitudinal change in regional brain volumes in prodromal Huntington disease. J. Neurol. Neurosurg. Psychiatry 82, 405–410 (2011).

    PubMed  Google Scholar 

  72. Ruocco, H. H., Bonilha, L., Li, L. M., Lopes-Cendes, I. & Cendes, F. Longitudinal analysis of regional grey matter loss in Huntington disease: effects of the length of the expanded CAG repeat. J. Neurol. Neurosurg. Psychiatry 79, 130–135 (2008).

    CAS  PubMed  Google Scholar 

  73. Paulsen, J. S. et al. Striatal and white matter predictors of estimated diagnosis for Huntington disease. Brain Res. Bull. 82, 201–207 (2010).

    PubMed  PubMed Central  Google Scholar 

  74. Younes, L. et al. Regionally selective atrophy of subcortical structures in prodromal HD as revealed by statistical shape analysis. Hum. Brain Mapp. 35, 792–809 (2014).

    PubMed  Google Scholar 

  75. Rosas, H. D. et al. Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology 60, 1615–1620 (2003).

    CAS  PubMed  Google Scholar 

  76. Rosas, H. D. et al. Cerebral cortex and the clinical expression of Huntington's disease: complexity and heterogeneity. Brain 131, 1057–1068 (2008).

    PubMed  PubMed Central  Google Scholar 

  77. Nopoulos, P. C. et al. Cerebral cortex structure in prodromal Huntington disease. Neurobiol. Dis. 40, 544–554 (2010).

    PubMed  PubMed Central  Google Scholar 

  78. Hobbs, N. Z. et al. The progression of regional atrophy in premanifest and early Huntington's disease: a longitudinal voxel-based morphometry study. J. Neurol. Neurosurg. Psychiatry 81, 756–763 (2010).

    PubMed  Google Scholar 

  79. Thieben, M. J. et al. The distribution of structural neuropathology in pre-clinical Huntington's disease. Brain 125, 1815–1828 (2002).

    CAS  PubMed  Google Scholar 

  80. Ciarmiello, A. et al. Brain white-matter volume loss and glucose hypometabolism precede the clinical symptoms of Huntington's disease. J. Nucl. Med. 47, 215–222 (2006).

    CAS  PubMed  Google Scholar 

  81. Paulsen, J. S. et al. Brain structure in preclinical Huntington's disease. Biol. Psychiatry 59, 57–63 (2006).

    CAS  PubMed  Google Scholar 

  82. Beglinger, L. J. et al. White matter volume and cognitive dysfunction in early Huntington's disease. Cogn. Behav. Neurol. 18, 102–107 (2005).

    PubMed  Google Scholar 

  83. Crawford, H. E. et al. Corpus callosal atrophy in premanifest and early Huntington's disease. J. Huntingtons Dis. 2, 517–526 (2013).

    CAS  PubMed  Google Scholar 

  84. van den Bogaard, S. J. et al. Shape analysis of subcortical nuclei in Huntington's disease, global versus local atrophy—results from the TRACK-HD study. J. Neurol. Sci. 307, 60–68 (2011).

    CAS  PubMed  Google Scholar 

  85. Reading, S. A. et al. Regional white matter change in pre-symptomatic Huntington's disease: a diffusion tensor imaging study. Psychiatry Res. 140, 55–62 (2005).

    PubMed  Google Scholar 

  86. Rosas, H. D. et al. Diffusion tensor imaging in presymptomatic and early Huntington's disease: selective white matter pathology and its relationship to clinical measures. Mov. Disord. 21, 1317–1325 (2006).

    PubMed  Google Scholar 

  87. Klöppel, S. et al. White matter connections reflect changes in voluntary-guided saccades in pre-symptomatic Huntington's disease. Brain 131, 196–204 (2008).

    PubMed  Google Scholar 

  88. Stoffers, D. et al. Contrasting gray and white matter changes in preclinical Huntington disease: an MRI study. Neurology 74, 1208–1216 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Douaud, G. et al. In vivo evidence for the selective subcortical degeneration in Huntington's disease. Neuroimage 46, 958–966 (2009).

    PubMed  Google Scholar 

  90. Della Nave, R. et al. Regional distribution and clinical correlates of white matter structural damage in Huntington disease: a tract-based spatial statistics study. AJNR Am. J. Neuroradiol. 31, 1675–1681 (2010).

    CAS  PubMed  Google Scholar 

  91. Rosas, H. D. et al. Altered white matter microstructure in the corpus callosum in Huntington's disease: implications for cortical “disconnection”. Neuroimage 49, 2995–3004 (2010).

    PubMed  Google Scholar 

  92. Sritharan, A. et al. A longitudinal diffusion tensor imaging study in symptomatic Huntington's disease. J. Neurol. Neurosurg. Psychiatry 81, 257–262 (2010).

    PubMed  Google Scholar 

  93. Bohanna, I. et al. Diffusion tensor imaging in Huntington's disease reveals distinct patterns of white matter degeneration associated with motor and cognitive deficits. Brain Imaging Behav. 5, 171–180 (2011).

    PubMed  Google Scholar 

  94. Delmaire, C. et al. The structural correlates of functional deficits in early huntington's disease. Hum. Brain Mapp. 34, 2141–2153 (2012).

    PubMed  Google Scholar 

  95. Paulsen, J. S. et al. fMRI biomarker of early neuronal dysfunction in presymptomatic Huntington's disease. AJNR Am. J. Neuroradiol. 25, 1715–1721 (2004).

    PubMed  Google Scholar 

  96. Reading, S. A. et al. Functional brain changes in presymptomatic Huntington's disease. Ann. Neurol. 55, 879–883 (2004).

    PubMed  Google Scholar 

  97. Paulsen, J. S. Functional imaging in Huntington's disease. Exp. Neurol. 216, 272–277 (2009).

    PubMed  Google Scholar 

  98. Novak, M. J. et al. Altered brain mechanisms of emotion processing in pre-manifest Huntington's disease. Brain 135, 1165–1179 (2012).

    PubMed  PubMed Central  Google Scholar 

  99. van den Bogaard, S. J. et al. Magnetization transfer imaging in premanifest and manifest Huntington disease. AJNR. Am. J. Neuroradiol. 33, 884–889 (2012).

    CAS  PubMed  Google Scholar 

  100. Klöppel, S. et al. Functional compensation of motor function in pre-symptomatic Huntington's disease. Brain 132, 1624–1632 (2009).

    PubMed  PubMed Central  Google Scholar 

  101. Unschuld, P. G. et al. Impaired cortico-striatal functional connectivity in prodromal Huntington's disease. Neurosci. Lett. 514, 204–209 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Wolf, R. C. et al. Default-mode network changes in preclinical Huntington's disease. Exp. Neurol. 237, 191–198 (2012).

    PubMed  Google Scholar 

  103. Mayberg, H. S. et al. Paralimbic frontal lobe hypometabolism in depression associated with Huntington's disease. Neurology 42, 1791–1797 (1992).

    CAS  PubMed  Google Scholar 

  104. Kloppel, S. et al. Irritability in pre-clinical Huntington's disease. Neuropsychologia 48, 549–557 (2010).

    PubMed  PubMed Central  Google Scholar 

  105. Unschuld, P. G. et al. Depressive symptoms in prodromal Huntington's disease correlate with Stroop-interference related functional connectivity in the ventromedial prefrontal cortex. Psychiatry Res. 203, 166–174 (2012).

    PubMed  PubMed Central  Google Scholar 

  106. Unschuld, P. G. et al. Prefrontal executive function associated coupling relates to Huntington's disease stage. Cortex 49, 2661–2673 (2013).

    PubMed  Google Scholar 

  107. Wolf, R. C. et al. Altered frontostriatal coupling in pre-manifest Huntington's disease: effects of increasing cognitive load. Eur. J. Neurol. 15, 1180–1190 (2008).

    CAS  PubMed  Google Scholar 

  108. Davie, C. A., Barker, G. J., Quinn, N., Tofts, P. S. & Miller, D. H. Proton MRS in Huntington's disease. Lancet 343, 1580 (1994).

    CAS  PubMed  Google Scholar 

  109. Jenkins, B. G. et al. 1H NMR spectroscopy studies of Huntington's disease: correlations with CAG repeat numbers. Neurology 50, 1357–1365 (1998).

    CAS  PubMed  Google Scholar 

  110. Sturrock, A. et al. Magnetic resonance spectroscopy biomarkers in premanifest and early Huntington disease. Neurology 75, 1702–1710 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Unschuld, P. G. et al. Brain metabolite alterations and cognitive dysfunction in early Huntington's disease. Mov. Disord. 27, 895–902 (2012).

    PubMed  PubMed Central  Google Scholar 

  112. Rosas, H. D. et al. Alterations in brain transition metals in Huntington disease: an evolving and intricate story. Arch. Neurol. 69, 887–893 (2012).

    PubMed  PubMed Central  Google Scholar 

  113. van Oostrom, J. C. et al. Striatal dopamine D2 receptors, metabolism, and volume in preclinical Huntington disease. Neurology 65, 941–943 (2005).

    CAS  PubMed  Google Scholar 

  114. Majid, D. S. et al. Basal ganglia atrophy in prodromal Huntington's disease is detectable over one year using automated segmentation. Mov. Disord. 26, 2544–2551 (2011).

    PubMed  PubMed Central  Google Scholar 

  115. Rizk-Jackson, A. et al. Evaluating imaging biomarkers for neurodegeneration in pre-symptomatic Huntington's disease using machine learning techniques. Neuroimage 56, 788–796 (2011).

    PubMed  Google Scholar 

  116. Scahill, R. I. et al. Clinical impairment in premanifest and early Huntington's disease is associated with regionally specific atrophy. Hum. Brain Mapp. 34, 519–529 (2013).

    PubMed  Google Scholar 

  117. Jech, R. et al. Variation of selective gray and white matter atrophy in Huntington's disease. Mov. Disord. 22, 1783–1789 (2007).

    PubMed  Google Scholar 

  118. Jurgens, C. K. et al. Basal ganglia volume and clinical correlates in 'preclinical' Huntington's disease. J. Neurol. 255, 1785–1791 (2008).

    PubMed  Google Scholar 

  119. Squitieri, F. et al. Distinct brain volume changes correlating with clinical stage, disease progression rate, mutation size, and age at onset prediction as early biomarkers of brain atrophy in Huntington's disease. CNS Neurosci. Ther. 15, 1–11 (2009).

    PubMed  PubMed Central  Google Scholar 

  120. Squitieri, F. et al. Atypical movement disorders in the early stages of Huntington's disease: clinical and genetic analysis. Clin. Genet. 58, 50–56 (2000).

    CAS  PubMed  Google Scholar 

  121. Squitieri, F. et al. Highly disabling cerebellar presentation in Huntington disease. Eur. J. Neurol. 10, 443–444 (2003).

    CAS  PubMed  Google Scholar 

  122. Wolf, R. C., Vasic, N., Schönfeldt-Lecuona, C., Landwehrmeyer, G. B. & Ecker, D. Dorsolateral prefrontal cortex dysfunction in presymptomatic Huntington's disease: evidence from event-related fMRI. Brain 130, 2845–2857 (2007).

    PubMed  Google Scholar 

  123. Feigin, A. et al. Metabolic network abnormalities in early Huntington's disease: an [18F]FDG PET study. J. Nucl. Med. 42, 1591–1595 (2001).

    CAS  PubMed  Google Scholar 

  124. Shin, H. et al. Decreased metabolism in the cerebral cortex in early-stage Huntington's disease: a possible biomarker of disease progression? J. Clin. Neurol. 9, 21–25 (2013).

    PubMed  PubMed Central  Google Scholar 

  125. Feigin, A. et al. Thalamic metabolism and symptom onset in preclinical Huntington's disease. Brain 130, 2858–2867 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Eidelberg, D. & Surmeier, D. J. Brain networks in Huntington disease. J. Clin. Invest. 121, 484–492 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Tang, C. C. et al. Metabolic network as a progression biomarker of premanifest Huntington's disease. J. Clin. Invest. 123, 4076–4088 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Aylward, E. H. et al. Striatal volume contributes to the prediction of onset of Huntington disease in incident cases. Biol. Psychiatry 71, 822–828 (2012).

    PubMed  Google Scholar 

  129. Ciarmiello, A. et al. 18F-FDG PET uptake in the pre-Huntington disease caudate affects the time-to-onset independently of CAG expansion size. Eur. J. Nucl. Med. Mol. Imaging 39, 1030–1036 (2012).

    CAS  PubMed  Google Scholar 

  130. Wild, E. J. & Tabrizi, S. J. Biomarkers for Huntington's disease. Expert Opin. Med. Diagn. 2, 47–62 (2008).

    CAS  PubMed  Google Scholar 

  131. Scahill, R. I., Wild, E. J. & Tabrizi, S. J. Biomarkers for Huntington's disease: an update. Expert Opin. Med. Diagn. 6, 371–375 (2012).

    CAS  PubMed  Google Scholar 

  132. Hersch, S. M. et al. Creatine in Huntington disease is safe, tolerable, bioavailable in brain and reduces serum 8OH2'dG. Neurology 66, 250–252 (2006).

    CAS  PubMed  Google Scholar 

  133. Long, J. D., Matson, W. R., Juhl, A. R., Leavitt, B. R. & Paulsen, J. S. 8OHdG as a marker for Huntington disease progression. Neurobiol. Dis. 46, 625–634 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Borowsky, B. et al. 8OHdG is not a biomarker for Huntington disease state or progression. Neurology 80, 1934–1941 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Fang, Q. et al. Brain-specific proteins decline in the cerebrospinal fluid of humans with Huntington disease. Mol. Cell. Proteomics 8, 451–466 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Hu, Y. et al. Transcriptional modulator H2A histone family, member Y (H2AFY) marks Huntington disease activity in man and mouse. Proc. Natl Acad. Sci. USA 108, 17141–17146 (2011).

    CAS  PubMed  Google Scholar 

  137. Leoni, V. et al. Plasma 24S-hydroxycholesterol and caudate MRI in pre-manifest and early Huntington's disease. Brain 131, 2851–2859 (2008).

    PubMed  Google Scholar 

  138. Weiss, A. et al. Single-step detection of mutant huntingtin in animal and human tissues: a bioassay for Huntington's disease. Anal. Biochem. 395, 8–15 (2009).

    CAS  PubMed  Google Scholar 

  139. Weiss, A. et al. Mutant huntingtin fragmentation in immune cells tracks Huntington's disease progression. J. Clin. Invest. 122, 3731–3736 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Moscovitch-Lopatin, M. et al. Optimization of an HTRF assay for the detection of soluble mutant huntingtin in human buffy coats: a potential biomarker in blood for Huntington disease. PLoS Curr. 2, RRN1205 (2010).

    PubMed  PubMed Central  Google Scholar 

  141. Blennow, K., Hampel, H., Weiner, M. & Zetterberg, H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat. Rev. Neurol. 6, 131–144 (2010).

    CAS  PubMed  Google Scholar 

  142. Rosas, H. D. et al. PRECREST: a phase II prevention and biomarker trial of creatine in at-risk Huntington disease. Neurology http://dx.doi.org/10.1212/WNL.0000000000000187.

  143. Jack, C. R. Jr et al. Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12, 207–216 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Langbehn, D. R., Brinkman, R. R., Falush, D., Paulsen, J. S. & Hayden, M. R. A new model for prediction of the age of onset and penetrance for Huntington's disease based on CAG length. Clin. Genet. 65, 267–277 (2004).

    CAS  PubMed  Google Scholar 

  145. Warner, J. H. & Hayden, M. A new model for age-at-onset in Huntington's Disease. Presented at CHDI Foundation Huntington's Disease Therapeutics Conference (Palm Springs, CA, USA, 2012).

    Google Scholar 

  146. Langbehn, D. et al. Improving a simple Huntington Disease burden score. Presented at World Congress on Huntington's Disease (Melbourne, Australia, 2011).

    Google Scholar 

Download references

Acknowledgements

We acknowledge the contributions of the REGISTRY and COHORT study investigators for their work in collecting the data displayed in Figure 4. A complete list of the COHORT study investigators appears in Huntington Study Group COHORT Investigators & Dorsey (2012),23 and a complete list of the REGISTRY study investigators appears in Orth, M. & The European Huntington's Disease Network (2010).17 In addition, we thank the European Huntington's Disease Network, the Huntington Study Group, the CHDI Foundation, and HP Therapeutics for providing financial support for the data collection efforts that led to Figure 4. We thank all the study participants and their families, including the Venezuela study, the JHU study, and the TRACK-HD, REGISTRY, PREDICT-HD, and COHORT studies, who made this work possible. We thank Simon Noble, Cristina Sampaio and Robi Blumenstein for comments and suggestions. We thank Sharon Blackburn for figure drawing.

Author information

Authors and Affiliations

Authors

Contributions

C.A.R., E.H.A, E.J.W., D.R.L., J.D.L., J.H.W., R.I.S., B.R.L., J.C.S., R.R., P.G.U., R.L.M. and S.J.T. researched the data for the article. C.A.R., E.H.A, E.J.W., D.R.L., J.D.L., J.H.W., R.I.S. and S.J.T. provided substantial contributions to discussions of the content. C.A.R., E.H.A, E.J.W., D.R.L., J.D.L., J.H.W., R.I.S., B.R.L., J.C.S., R.R., P.G.U., A.W., R.L.M. and S.J.T. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Christopher A. Ross.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ross, C., Aylward, E., Wild, E. et al. Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat Rev Neurol 10, 204–216 (2014). https://doi.org/10.1038/nrneurol.2014.24

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2014.24

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research