Skip to main content
Log in

Role of Variability in Explaining Ethanol Pharmacokinetics

Research and Forensic Applications

  • Review Article
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Variability in the rate and extent of absorption, distribution and elimination of ethanol has important ramifications in clinical and legal medicine. The speed of absorption of ethanol from the gut depends on time of day, drinking pattern, dosage form, concentration of ethanol in the beverage, and particularly the fed or fasting state of the individual. During the absorption phase, a concentration gradient exists between the stomach, portal vein and the peripheral venous circulation. First-pass metabolism and bioavailability are difficult to assess because of dose-, time- and flow-dependent kinetics.

Ethanol is transported by the bloodstream to all parts of the body. The rate of equilibration is governed by the ratio of blood flow to tissue mass. Arterial and venous concentrations differ as a function of time after drinking. Ethanol has low solubility in lipids and does not bind to plasma proteins, so volume of distribution is closely related to the amount of water in the body, contributing to sex- and age-related differences in disposition.

The bulk of ethanol ingested (95–98%) is metabolised and the remainder is excreted in breath, urine and sweat. The rate-limiting step in oxidation is conversion of ethanol into acetaldehyde by cytosolic alcohol dehydrogenase (ADH), which has a low Michaelis-Menten constant (Km) of 0.05–0.1 g/L. Moreover, this enzyme displays polymorphism, which accounts for racial and ethnic variations in pharmacokinetics. When a moderate dose is ingested, zero-order elimination operates for a large part of the blood-concentration time course, since ADH quickly becomes saturated. Another ethanol-metabolising enzyme, cytochrome P450 2E1, has a higher Km (0.5–0.8 g/L) and is also inducible, so that the clearance of ethanol is increased in heavy drinkers.

Study design influences variability in blood ethanol pharmacokinetics. Oral or intravenous administration, or fed or fasted state, might require different pharmacokinetic models. Recent work supports the need for multicompartment models to describe the disposition of ethanol instead of the traditional one-compartment model with zero-order elimination. Moreover, appropriate statistical analysis is needed to isolate between- and within-subject components of variation. Samples at low blood ethanol concentrations improve the estimation of parameters and reduce variability.

Variability in ethanol pharmacokinetics stems from a combination of both genetic and environmental factors, and also from the nonlinear nature of ethanol disposition, experimental design, subject selection strategy and dose dependency. More work is needed to document variability in ethanol pharmacokinetics in real-world situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Table I
Table II
Table III
Table IV
Table V
Table VI
Fig. 8
Table VII

Similar content being viewed by others

References

  1. Widmark EMP. Eine Mikromethode zur Bestimmung von: Atylalkohol im Blut. Biochem Z 1922; 131: 473–84

    CAS  Google Scholar 

  2. Widmark EMP. Die theoretischen Grundlagen und die praktische Verwendbarkeit der gerichtlich-medizinischen Alkoholbestimmung. Berlin: Urban & Schwarzenberg, 1932

    Google Scholar 

  3. Teorell T. Kinetics of distribution of substances administered to the body: I. the extravascular modes of administration. Arch Int Pharmacodyn Ther 1937; 57: 205–25

    CAS  Google Scholar 

  4. Teorell T. Kinetics of distribution of substances administered to the body: II. the intravascular modes of administration. Arch Int Pharmacodyn Ther 1937; 57: 226–40

    CAS  Google Scholar 

  5. Bonnichsen RK, Wassén A. Crystaline alcohol dehydrogenase from horse liver. Arch Biochem 1948; 18: 361–3

    PubMed  CAS  Google Scholar 

  6. Theorell H, Bonnichsen RK. Studies on liver alcohol dehydrogenase: 1. equilibria and initial reaction velocities. Acta Chem Scand 1951; 5: 1105–26

    Article  CAS  Google Scholar 

  7. Bonnichsen RK, Theorell H. An enzymatic method for the microdetermination of ethanol. Scand J Clin Lab Invest 1951; 3: 58–62

    Article  PubMed  CAS  Google Scholar 

  8. Lundquist F, Wolthers H. The kinetics of alcohol elimination in man. Acta Pharmacol Toxicol (Copenh) 1958; 14: 265–89

    Article  CAS  Google Scholar 

  9. Wagner JG, Patel JA. Variations in absorption and elimination rates of ethyl alcohol in a single subject. Res Commun Chem Pathol Pharmacol 1972; 4: 61–76

    PubMed  CAS  Google Scholar 

  10. Wilkinson PK, Reynolds G, Holmes OD, et al. Nonlinear pharmacokinetics of ethanol: the disproportionate AUC-dose relationship. Alcohol Clin Exp Res 1980; 4: 384–90

    Article  PubMed  CAS  Google Scholar 

  11. Crabb DW. Ethanol oxidizing enzymes: roles in alcohol metabolism and alcoholic liver disease. Prog Liver Dis 1995; 13: 151–72

    PubMed  CAS  Google Scholar 

  12. Levitt MD, Levitt DG. The critical role of the rate of ethanol absorption in the interpretation of studies purporting to demonstrate gastric metabolism of ethanol. J Pharmacol Exp Ther 1994; 269: 297–304

    PubMed  CAS  Google Scholar 

  13. Lôtterie J, Husslein EM, Bolt J, et al. Tageszeitliche Unterschiede der Alkoholresorption. Blutalkohol 1989; 26: 369–75

    Google Scholar 

  14. Johnson RD, Horowitz M, Maddox AF, et al. Cigarette smoking and rate of gastric emptying: effect on alcohol absorption. BMJ 1991; 302: 20–3

    Article  PubMed  CAS  Google Scholar 

  15. Yap M, Mascord DJ, Starmer GA, et al. Studies on the chronopharmacology of ethanol. Alcohol Alcohol 1993; 28: 17–24

    PubMed  CAS  Google Scholar 

  16. Fraser AG, Rosalki SB, Gamble GD, et al. Inter-individual and intra-individual variability of ethanol concentration-time profiles: comparison of ethanol ingestion before or after an evening meal. Br J Clin Pharmacol 1995; 40: 387–92

    Article  PubMed  CAS  Google Scholar 

  17. Amir I, Anwar N, Baraona E, et al. Ranitidine increases the bioavailability of imbibed alcohol by accelerating gastric emptying. Life Sci 1996; 58: 511–8

    Article  PubMed  CAS  Google Scholar 

  18. Roine RP, Gentry RT, Lim RT Jr, et al. Comparison of blood alcohol concentrations after beer and whiskey. Alcohol Clin Exp Res 1993; 17: 709–11

    Article  PubMed  CAS  Google Scholar 

  19. Schwartz JG, Salman UA, McMahan CA, et al. Gastric emptying of beer in Mexican-Americans compared with non-Hispanic whites. Metabolism 1996; 45: 1174–8

    Article  PubMed  CAS  Google Scholar 

  20. Horowitz M, Maddox A, Bochner M, et al. Relationships between gastric emptying of solid and caloric liquid meals and alcohol absorption. Am J Physiol 1989; 257: G291–8

    PubMed  CAS  Google Scholar 

  21. Kong MF, Horowitz M. Gastric emptying in diabetes mellitus: relationship to blood-glucose control. Clin Geriatr Med 1999; 15: 321–38

    PubMed  CAS  Google Scholar 

  22. Vestal RE, McGuire EA, Tobin JD, et al. Aging and ethanol metabolism. Clin Pharmacol Ther 1977; 21: 343–54

    PubMed  CAS  Google Scholar 

  23. Jones AW, Neri A. Age-related differences in blood ethanol parameters and subjective feelings of intoxication in healthy men. Alcohol Alcohol 1985; 20: 45–52

    PubMed  CAS  Google Scholar 

  24. Devgun MS, Dunbar JA. Alcohol consumption, blood alcohol level and the relevance of body weight in experimental design and analysis. J Stud Alcohol 1990; 51: 24–8

    PubMed  CAS  Google Scholar 

  25. Davies BT, Bowen CK. Total body water and peak alcohol concentration: a comparative study of young, middle-age, and older females. Alcohol Clin Exp Res 1999; 23: 969–75

    PubMed  CAS  Google Scholar 

  26. Norberg A, Sandhagen B, Bratteby L-E, et al. Do ethanol and deuterium oxide distribute into the same water space in healthy volunteers?. Alcohol Clin Exp Res 2001; 25: 1423–30

    Article  PubMed  CAS  Google Scholar 

  27. Burnell JC, Li TK, Bosron WF. Purification and steady-state kinetic characterization of human liver beta 3 beta 3 alcohol dehydrogenase. Biochemistry 1989; 28: 6810–5

    Article  PubMed  CAS  Google Scholar 

  28. Bosron WF, Ehrig T, Li TK. Genetic factors in alcohol metabolism and alcoholism. Semin Liver Dis 1993; 13: 126–35

    Article  PubMed  CAS  Google Scholar 

  29. Keiding S, Christensen NJ, Damgaard SE, et al. Ethanol metabolism in heavy drinkers after massive and moderate alcohol intake. Biochem Pharmacol 1983; 32: 3097–102

    Article  PubMed  CAS  Google Scholar 

  30. Fraser AG. Pharmacokinetic interactions between alcohol and other drugs. Clin Pharmacokinet 1997; 33: 79–90

    Article  PubMed  CAS  Google Scholar 

  31. Klotz U, Ammon E. Clinical and toxicological consequences of the inductive potential of ethanol. Eur J Clin Pharmacol 1998; 54: 7–12

    Article  PubMed  CAS  Google Scholar 

  32. Fuhr U. Induction of drug metabolising enzymes: pharmacokinetic and toxicological consequences in humans. Clin Pharmacokinet 2000; 38: 493–504

    Article  PubMed  CAS  Google Scholar 

  33. Thummel KE, Slattery JT, Ro H, et al. Ethanol and production of the hepatotoxic metabolite of acetaminophen in healthy adults. Clin Pharmacol Ther 2000; 67: 591–9

    Article  PubMed  CAS  Google Scholar 

  34. Jackson PR, Tucker GT, Woods HF. Backtracking booze with Bayes: the retrospective interpretation of blood alcohol data. Br J Clin Pharmacol 1991; 31: 55–63

    Article  PubMed  CAS  Google Scholar 

  35. al-Lanqawi Y, Moreland TA, McEwen J, et al. Ethanol kinetics: extent of error in back extrapolation procedures. Br J Clin Pharmacol 1992; 34: 316–21

    Article  PubMed  CAS  Google Scholar 

  36. Gullberg RG, Jones AW. Guidelines for estimating the amount of alcohol consumed from a single measurement of blood alcohol concentration: re-evaluation of Widmark’s equation. Forensic Sci Int 1994; 69: 119–30

    Article  PubMed  CAS  Google Scholar 

  37. Holford NH. Clinical pharmacokinetics of ethanol. Clin Pharmacokinet 1987; 13: 273–92

    Article  PubMed  CAS  Google Scholar 

  38. von Wartburg J-P. Pharmacokinetics of alcohol. In: Crow KE, Batt RD, editors. Human metabolism of alcohol, Vol 1: pharmacokinetics, medicolegal aspects and general interest. Boca Raton (FL): CRC Press, 1989: 9–22

    Google Scholar 

  39. Kalant H. Pharmacokinetics of ethanol: absorption, distribution, and elimination. In: Begleiter H, Kissin B, editors. The pharmacology of alcohol and alcohol dependence. New York: Oxford University Press, 1996: 15–58

    Google Scholar 

  40. Lands WE. A review of alcohol clearance in humans. Alcohol 1998; 15: 147–60

    Article  PubMed  CAS  Google Scholar 

  41. Metzler CM, Tong DD. Computational problems of compartment models with Michaelis-Menten-type elimination. J Pharm Sci 1981; 70: 733–7

    Article  PubMed  CAS  Google Scholar 

  42. Norberg A, Gabrielsson J, Jones AW, et al. Within- and between-subject variations in pharmacokinetic parameters of ethanol by analysis of breath, venous blood and urine. Br J Clin Pharmacol 2000; 49: 399–408

    Article  PubMed  CAS  Google Scholar 

  43. Tozer TN, Winter ME. Phenytoin. In: Evans WE, Schentag JJ, Jusko WJ, editors. Applied pharmacokinetics: principles of therapeutic drug monitoring. Vancouver (WA): Applied Therapeutics, 1992

    Google Scholar 

  44. Gibaldi M, Perrier D. Pharmacokinetics. New York: Marcel Dekker, 1982

    Google Scholar 

  45. Gabrielsson J, Weiner D. Pharmacokinetic and pharmacodynamic data analysis: concepts and applications. 3rd edition. Stockholm: Swedish Pharmaceutical Press, 2000

    Google Scholar 

  46. Whitlock JP, Denison MS. Induction of cytochrome P450 enzymes that metabolize xenobiotics. In: Ortiz de Montellano PR, editor. Cytochrome P450: structure, mechanism, and biochemistry. New York: Plenum Press, 1995: 367–90

    Google Scholar 

  47. Park BK, Kitteringham NR, Pirmohamed M, et al. Relevance of induction of human drug-metabolizing enzymes: pharmacological and toxicological implications. Br J Clin Pharmacol 1996; 41: 477–91

    Article  PubMed  CAS  Google Scholar 

  48. Gonzalez FJ, Ueno T, Umeno M, et al. Microsomal ethanol oxidizing system: transcriptional and posttranscriptional regulation of cytochrome P450, CYP2E1. Alcohol Alcohol Suppl 1991; 1: 97–101

    PubMed  CAS  Google Scholar 

  49. Song BJ. Ethanol-inducible cytochrome P450 (CYP2E1): biochemistry, molecular biology and clinical relevance: 1996 update. Alcohol Clin Exp Res 1996; 20: 138A–46A

    Article  PubMed  CAS  Google Scholar 

  50. Slattery JT, Nelson SD, Thummel KE. The complex interaction between ethanol and acetaminophen. Clin Pharmacol Ther 1996; 60: 241–6

    Article  PubMed  CAS  Google Scholar 

  51. von Bahr C, Steiner E, Koike Y, et al. Time course of enzyme induction in humans: effect of pentobarbital on nortriptyline metabolism. Clin Pharmacol Ther 1998; 64: 18–26

    Article  Google Scholar 

  52. Abramson FP. Kinetic models of induction: I. persistence of the inducing substance. J Pharm Sci 1986; 75: 223–8

    Article  PubMed  CAS  Google Scholar 

  53. Abramson FP. Kinetic models of induction: II. decreased turnover of a product or its precursor. J Pharm Sci 1986; 75: 229–32

    Article  PubMed  CAS  Google Scholar 

  54. Norberg A. Clinical pharmacokinetics of intravenous ethanol: relationship between the ethanol space and total body water. Thesis from the Department of Anesthesiology and Intensive Care, Karolinska Institute at Huddinge University Hospital, Huddinge, Sweden, 2001

  55. Dedrick RL, Forrester DD. Blood flow limitations in interpreting Michaelis constants for ethanol oxidation in vivo. Biochem Pharmacol 1973; 22: 1133–40

    Article  PubMed  CAS  Google Scholar 

  56. Keiding S, Johansen S, Midtboll I, et al. Ethanol elimination kinetics in human liver and pig liver in vivo. Am J Physiol 1979; 237: E316–24

    PubMed  CAS  Google Scholar 

  57. Greenway CV, Lautt WW. Acute and chronic ethanol on hepatic oxygen ethanol and lactate metabolism in cats. Am J Physiol 1990; 258: G411–8

    PubMed  CAS  Google Scholar 

  58. Derr RF. Simulation studies on ethanol metabolism in different human populations with a physiological pharmacokinetic model. J Pharm Sci 1993; 82: 677–82

    Article  PubMed  CAS  Google Scholar 

  59. Pastino GM, Sultatos LG, Flynn EJ. Development and application of a physiologically based pharmacokinetic model for ethanol in the mouse. Alcohol Alcohol 1996; 31: 365–74

    PubMed  CAS  Google Scholar 

  60. Pastino GM, Conolly RB. Application of a physiologically based pharmacokinetic model to estimate the bioavailability of ethanol in male rats: distinction between gastric and hepatic pathways of metabolic clearance. Toxicol Sci 2000; 55: 256–65

    Article  PubMed  CAS  Google Scholar 

  61. O’Connor S, Morzorati S, Christian J, et al. Clamping breath alcohol concentration reduces experimental variance: application to the study of acute tolerance to alcohol and alcohol elimination rate. Alcohol Clin Exp Res 1998; 22: 202–10

    PubMed  Google Scholar 

  62. Dubowski KM. Alcohol determination in the clinical laboratory. Am J Clin Pathol 1980; 74: 747–50

    PubMed  CAS  Google Scholar 

  63. Peng GW, Chiou WL. Analysis of drugs and other toxic substances in biological samples for pharmacokinetic studies. J Chromatogr 1990; 531: 3–50

    Article  PubMed  CAS  Google Scholar 

  64. Tagliaro F, Lubli G, Ghielmi S, et al. Chromatographie methods for blood alcohol determination. J Chromatogr 1992; 580: 161–90

    Article  PubMed  CAS  Google Scholar 

  65. Jones AW, Schuberth J. Computer-aided headspace gas chromatography applied to blood-alcohol analysis: importance of online process control. J Forensic Sci 1989; 34: 1116–27

    PubMed  CAS  Google Scholar 

  66. Gullberg RG. Methodology and quality assurance in forensic breath alcohol analysis. Forensic Sci Rev 2000; 12: 50–68

    Google Scholar 

  67. Jones AW. Measuring alcohol in blood and breath for forensic purposes: a historical review. Forensic Sci Rev 2000; 12: 24–47

    Google Scholar 

  68. Jones AW, Hahn RG, Stalberg HP. Distribution of ethanol and water between plasma and whole blood; inter- and intra-individual variations after administration of ethanol by intravenous infusion. Scand J Clin Lab Invest 1990; 50: 775–80

    Article  PubMed  CAS  Google Scholar 

  69. Wilkinson PK, Sedman AJ, Sakmar E, et al. Blood ethanol concentrations during and following constant-rate intravenous infusion of alcohol. Clin Pharmacol Ther 1976; 19: 213–23

    PubMed  CAS  Google Scholar 

  70. Sedman AJ, Wilkinson PK, Wagner JG. Concentrations of ethanol in two segments of the vascular system. J Forensic Sci 1976; 21: 315–22

    PubMed  CAS  Google Scholar 

  71. Martin E, Moll W, Schmid P, et al. The pharmacokinetics of alcohol in human breath, venous and arterial blood after oral ingestion. Eur J Clin Pharmacol 1984; 26: 619–26

    Article  PubMed  CAS  Google Scholar 

  72. Jones AW, Norberg A, Hahn RG. Concentration-time profiles of ethanol in arterial and venous blood and end-expired breath during and after intravenous infusion. J Forensic Sci 1997; 42: 1088–94

    PubMed  CAS  Google Scholar 

  73. Kaltenbach ML, Vistelle R, Hoizey G, et al. Arterio-venous ethanol levels in blood and plasma after intravenous injection in rabbits. Alcohol 1998; 15: 319–25

    Article  PubMed  CAS  Google Scholar 

  74. Dubowski KM. The blood/breath ratio of ethanol [abstract]. Clin Chem 1979; 25: 1144

    Google Scholar 

  75. Emerson VJ, Holleyhead R, Isaacs MD, et al. The measurement of breath alcohol: the laboratory evaluation of substantive breath test equipment and the report of an operational police trial. J Forensic Sci Soc 1980; 20: 3–70

    Article  PubMed  CAS  Google Scholar 

  76. Gullberg RG. Statistical evaluation and reporting of blood alcohol/breath ratio distribution data. J Anal Toxicol 1991; 15: 343–4

    PubMed  CAS  Google Scholar 

  77. Labianca DA, Simpson G. Statistical analysis of blood- to breath-alcohol ratio data in the logarithm-transformed and non-transformed modes. Eur J Clin Chem Clin Biochem 1996; 34: 111–7

    PubMed  CAS  Google Scholar 

  78. Jones AW, Andersson L. Variability of the blood/breath alcohol ratio in drinking drivers. J Forensic Sci 1996; 41: 916–21

    PubMed  CAS  Google Scholar 

  79. Jones AW. Quantitative measurements of the alcohol concentration and the temperature of breath during a prolonged exhalation. Acta Physiol Scand 1982; 114: 407–12

    Article  PubMed  CAS  Google Scholar 

  80. Hlastala MP. The alcohol breath test: a review. J Appl Physiol 1998; 84: 401–8

    Article  PubMed  CAS  Google Scholar 

  81. Jones AW. Determination of liquid/air partition coefficients for dilute solutions of ethanol in water, whole blood, and plasma. J Anal Toxicol 1983; 7: 193–7

    PubMed  CAS  Google Scholar 

  82. Alobaidi TA, Hill DW, Payne JP. Significance of variations in blood: breath partition coefficient of alcohol. BMJ 1976; 2: 1479–81

    Article  PubMed  CAS  Google Scholar 

  83. Jones AW. Variability of the blood: breath alcohol ratio in vivo. J Stud Alcohol 1978; 39: 1931–9

    PubMed  CAS  Google Scholar 

  84. Dubowski KM. Absorption, distribution and elimination of alcohol: highway safety aspects. J Stud Alcohol Suppl 1985; 10: 98–108

    PubMed  CAS  Google Scholar 

  85. Heifer U. Atemalkoholkonzentration/Blutalkoholkonzentration: Utopie eines forensisch brauchbaren Beweismittels. Blutalkohol 1986; 23: 229–38

    PubMed  CAS  Google Scholar 

  86. Lentner C. Geigy scientific tables. Vol 1: units of measurement, body fluids, composition of the body, nutrition. Basle, Switzerland: Ciba-Geigy, 1981

    Google Scholar 

  87. Goldberg L. Quantitative studies on alcohol tolerance in man. Acta Physiol Scand 1943; 5 Suppl. 16: 1–128

    Google Scholar 

  88. Zink P, Reinhardt G. Der Verlauf der Blutalkoholkurve bei grossen Trinkmengen. Blutalkohol 1984; 21: 422–42

    PubMed  CAS  Google Scholar 

  89. Cortot A, Jobin G, Ducrot F, et al. Gastric emptying and gastrointestinal absorption of alcohol ingested with a meal. Dig Dis Sci 1986; 31: 343–8

    Article  PubMed  CAS  Google Scholar 

  90. Jones AW, Jonsson KA, Kechagias S. Effect of high-fat, high-protein, and high-carbohydrate meals on the pharmacokinetics of a small dose of ethanol. Br J Clin Pharmacol 1997; 44: 521–6

    Article  PubMed  CAS  Google Scholar 

  91. Singh BN. Effects of food on clinical pharmacokinetics. Clin Pharmacokinet 1999; 37: 213–55

    Article  PubMed  CAS  Google Scholar 

  92. Edelbroek MA, Horowitz M, Wishart JM, et al. Effects of erythromycin on gastric emptying, alcohol absorption and small intestinal transit in normal subjects. J Nucl Med 1993; 34: 582–8

    PubMed  CAS  Google Scholar 

  93. Jones AW, Jônsson KA. Between-subject and within-subject variations in the pharmacokinetics of ethanol. Br J Clin Pharmacol 1994; 37: 427–31

    Article  PubMed  CAS  Google Scholar 

  94. Friel PN, Baer JS, Logan BK. Variability of ethanol absorption and breath concentrations during a large-scale alcohol administration study. Alcohol Clin Exp Res 1995; 19: 1055–60

    Article  PubMed  CAS  Google Scholar 

  95. Mumenthaler MS, Taylor JL, Yesavage JA. Ethanol pharmacokinetics in white women: nonlinear model fitting versus zero-order elimination analyses. Alcohol Clin Exp Res 2000; 24: 1353–62

    Article  PubMed  CAS  Google Scholar 

  96. Kühnholz B, Kaatsch HJ, Thomsen H, et al. Zur Dauer der Resorptionszeit bei einer Ethanolbelastung von 0.3, 0.5 und 0.8 g Alkohol pro kg Körpergewicht in 30 Minuten. Blutalkohol 1993; 30: 158–65

    PubMed  Google Scholar 

  97. Sharma R, Gentry RT, Lim RT Jr, et al. First-pass metabolism of alcohol: absence of diurnal variation and its inhibition by cimetidine after evening meal. Dig Dis Sci 1995; 40: 2091–7

    Article  PubMed  CAS  Google Scholar 

  98. Oneta CM, Simanowski UA, Martinez M, et al. First pass metabolism of ethanol is strikingly influenced by the speed of gastric emptying. Gut 1998; 43: 612–9

    Article  PubMed  CAS  Google Scholar 

  99. Baraona E, Abittan CS, Dohmen K, et al. Gender differences in pharmacokinetics of alcohol. Alcohol Clin Exp Res 2001; 25: 502–7

    Article  PubMed  CAS  Google Scholar 

  100. Cooke AR, Birchall A. Absorption of ethanol from the stomach. Gastroenterology 1969; 57: 269–72

    PubMed  CAS  Google Scholar 

  101. Wilkinson PK, Sedman AJ, Sakmar E, et al. Pharmacokinetics of ethanol after oral administration in the fasting state. J Pharmacokinet Biopharm 1977; 5: 207–24

    PubMed  CAS  Google Scholar 

  102. Pieters JE, Wedel M, Schaafsma G. Parameter estimation in a three-compartment model for blood alcohol curves. Alcohol Alcohol 1990; 25: 17–24

    PubMed  CAS  Google Scholar 

  103. Wedel M, Pieters JE, Pikaar NA, et al. Application of a three-compartment model to a study of the effects of sex, alcohol dose and concentration, exercise and food consumption on the pharmacokinetics of ethanol in healthy volunteers. Alcohol Alcohol 1991; 26: 329–36

    PubMed  CAS  Google Scholar 

  104. Näslund E, Bogefors J, Grybäck P, et al. Gastric emptying: comparison of scintigraphic, polyethylene glycol dilution, and paracetamol tracer assessment techniques. Scand J Gastroenterol 2000; 35: 375–9

    Article  PubMed  Google Scholar 

  105. Levitt MD, Levitt DG. Use of a two-compartment model to assess the pharmacokinetics of human ethanol metabolism. Alcohol Clin Exp Res 1998; 22: 1680–8

    Article  PubMed  CAS  Google Scholar 

  106. Lammers SM, Mainzer DE, Breteler MH. Do alcohol pharmacokinetics in women vary due to the menstrual cycle?. Addiction 1995; 90: 23–30

    Article  PubMed  CAS  Google Scholar 

  107. Gill J. Women, alcohol and the menstrual cycle. Alcohol Alcohol 1997; 32: 435–41

    PubMed  CAS  Google Scholar 

  108. Jones BM, Jones MK. Alcohol effects in women during the menstrual cycle. Ann N Y Acad Sci 1976; 273: 576–87

    Article  PubMed  CAS  Google Scholar 

  109. Marshall AW, Kingstone D, Boss M, et al. Ethanol elimination in males and females: relationship to menstrual cycle and body composition. Hepatology 1983; 3: 701–6

    Article  PubMed  CAS  Google Scholar 

  110. Haddad L, Milke P, Zapata L, et al. Effect of the menstrual cycle in ethanol pharmacokinetics. J Appl Toxicol 1998; 18: 15–8

    Article  PubMed  CAS  Google Scholar 

  111. Jones MK, Jones BM. Ethanol metabolism in women taking oral contraceptives. Alcohol Clin Exp Res 1984; 8: 24–8

    Article  PubMed  CAS  Google Scholar 

  112. Levitt MD, Li R, DeMaster EG, et al. Use of measurements of ethanol absorption from stomach and intestine to assess human ethanol metabolism. Am J Physiol 1997; 273: G951–7

    PubMed  CAS  Google Scholar 

  113. Gentry RT, Baraona E, Amir I, et al. Mechanism of the aspirin-induced rise in blood alcohol levels. Life Sci 1999; 65: 2505–12

    Article  PubMed  CAS  Google Scholar 

  114. Jones AW. Biochemistry and physiology of alcohol: applications to forensic science and toxicology. In: Garriott JC, editor. Medicolegal aspects of alcohol. London: Lawyers and Judges Publishing Company Inc, 1996: 85–136

    Google Scholar 

  115. Lautt WW, Macedo MP. Hepatic circulation and toxicology. Drug Metab Rev 1997; 29: 369–95

    Article  PubMed  CAS  Google Scholar 

  116. Caballeria J, Baraona E, Rodamilans M, et al. Effects of cimetidine on gastric alcohol dehydrogenase activity and blood ethanol levels. Gastroenterology 1989; 96: 388–92

    PubMed  CAS  Google Scholar 

  117. Roine R, Gentry RT, Hernandez-Munoz R, et al. Aspirin increases blood alcohol concentrations in humans after ingestion of ethanol. JAMA 1990; 264: 2406–8

    Article  PubMed  CAS  Google Scholar 

  118. Frezza M, di Padova C, Pozzato G, et al. High blood alcohol levels in women: the role of decreased gastric alcohol dehydrogenase activity and first-pass metabolism. N Engl J Med 1990; 322: 95–9

    Article  PubMed  CAS  Google Scholar 

  119. Fraser AG, Hudson M, Sawyerr AM, et al. Ranitidine, cimetidine, famotidine have no effect on post-prandial absorption of ethanol 0.8 g/kg taken after an evening meal. Aliment Pharmacol Ther 1992; 6: 693–700

    Article  PubMed  CAS  Google Scholar 

  120. Gentry RT, Baraona E, Lieber CS. Agonist: gastric first pass metabolism of alcohol. J Lab Clin Med 1994; 123: 21–6

    PubMed  CAS  Google Scholar 

  121. Levitt MD. Antagonist: the case against first-pass metabolism of ethanol in the stomach. J Lab Clin Med 1994; 123: 28–31

    PubMed  CAS  Google Scholar 

  122. Thuluvath P, Wojno KJ, Yardley JH, et al. Effects of Helicobacter pylori infection and gastritis on gastric alcohol dehydrogenase activity. Alcohol Clin Exp Res 1994; 18: 795–8

    Article  PubMed  CAS  Google Scholar 

  123. Moreno A, Pares X. Purification and characterization of a new alcohol dehydrogenase from human stomach. J Biol Chem 1991; 266: 1128–33

    PubMed  CAS  Google Scholar 

  124. Haber PS, Gentry RT, Mak KM, et al. Metabolism of alcohol by human gastric cells: relation to first-pass metabolism. Gastroenterology 1996; 111: 863–70

    Article  PubMed  CAS  Google Scholar 

  125. Baraona E, Gentry RT, Lieber CS. Bioavailability of alcohol: role of gastric metabolism and its interaction with other drugs. Dig Dis 1994; 12: 351–67

    Article  PubMed  CAS  Google Scholar 

  126. Ammon E, Schafer C, Hofmann U, et al. Disposition and first-pass metabolism of ethanol in humans: is it gastric or hepatic and does it depend on gender?. Clin Pharmacol Ther 1996; 59: 503–13

    Article  PubMed  CAS  Google Scholar 

  127. Levitt MD, Levitt DG. Appropriate use and misuse of blood concentration measurements to quantitate first-pass metabolism. J Lab Clin Med 2000; 136: 275–80

    Article  PubMed  CAS  Google Scholar 

  128. Gentry RT, Sharma R, Lim RT Jr, et al. A new method to quantify first pass metabolism of alcohol: application to the effects of H2-blockers on alcohol bioavailability [abstract]. Gastroenterology 1992; 108: A811

    Google Scholar 

  129. Levitt MD, Levitt DG. Use of a two-compartment model to predict ethanol metabolism. Alcohol Clin Exp Res 2000; 24: 409–10

    Article  PubMed  CAS  Google Scholar 

  130. Jônsson KA, Jones AW, Bostr: om H, et al. Lack of effect of omeprazole, cimetidine, and ranitidine on the pharmacokinetics of ethanol in fasting male volunteers. Eur J Clin Pharmacol 1992; 42: 209–12

    Article  PubMed  Google Scholar 

  131. Endres HG, Gruner O. Comparison of D2O and ethanol dilutions in total body water measurements in humans. Clin Investig 1994; 72: 830–7

    Article  PubMed  CAS  Google Scholar 

  132. Rangno RE, Kreeft JH, Sitar DS. Ethanol ‘dose-dependent’ elimination: Michaelis-Menten v classical kinetic analysis. Br J Clin Pharmacol 1981; 12: 667–73

    Article  PubMed  CAS  Google Scholar 

  133. Gentry RT. Determinants and analysis of blood alcohol concentrations after social drinking [abstract]. Alcohol Clin Exp Res 2000; 24: 399

    Article  PubMed  CAS  Google Scholar 

  134. Smith GD, Shaw LJ, Maini PK, et al. Mathematical modelling of ethanol metabolism in normal subjects and chronic alcohol misusers. Alcohol Alcohol 1993; 28: 25–32

    PubMed  CAS  Google Scholar 

  135. Hahn RG, Norberg A, Jones AW. Rate of distribution of ethanol into the total body water. Am J Ther 1995; 2: 50–6

    Article  PubMed  Google Scholar 

  136. Grant BF. The relationship between ethanol intake and DSM-III-R alcohol dependence: results of a national survey. J Subst Abuse 1993; 5: 257–67

    Article  PubMed  CAS  Google Scholar 

  137. Dawson DA, Archer LD, Grant BF. Reducing alcohol-use disorders via decreased consumption: a comparison of population and high-risk strategies. Drug Alcohol Depend 1996; 42: 39–47

    Article  PubMed  CAS  Google Scholar 

  138. York JL, Hirsch JA. Association between blood pressure and lifetime drinking patterns in moderate drinkers. J Stud Alcohol 1997; 58: 480–5

    PubMed  CAS  Google Scholar 

  139. Mirand AL, Weite JW. Total body water adjustment of mean alcohol intakes. J Subst Abuse 1994; 6: 419–25

    Article  PubMed  CAS  Google Scholar 

  140. Graham K, Wilsnack R, Dawson D, et al. Should alcohol consumption measures be adjusted for gender differences?. Addiction 1998; 93: 1137–47

    Article  PubMed  CAS  Google Scholar 

  141. Wagner JG, Wilkinson PK, Ganes DA. Parameters Vm’ and Km for elimination of alcohol in young male subjects following low doses of alcohol. Alcohol Alcohol 1989; 24: 555–64

    PubMed  CAS  Google Scholar 

  142. Dahl NV, Foote EF, Kapoian T, et al. Measuring total body water in peritoneal dialysis patients using an ethanol dilution technique. Kidney Int 1999; 56: 2297–303

    Article  PubMed  CAS  Google Scholar 

  143. Edelman IS, Leibman J. Anatomy of body water and electrolytes. Am J Med 1959; 27: 256–77

    Article  PubMed  CAS  Google Scholar 

  144. Borkan GA, Norris AH. Fat redistribution and the changing body dimensions of the adult male. Hum Biol 1977; 49: 495–513

    PubMed  CAS  Google Scholar 

  145. Schoeller DA. Changes in total body water with age. Am J Clin Nutr 1989;50: 1176–81

    PubMed  CAS  Google Scholar 

  146. Cohn SH, Vartsky D, Yasumura S, et al. Compartmental body composition based on total-body nitrogen, potassium, and calcium. Am J Physiol 1980; 239: E524–30

    PubMed  CAS  Google Scholar 

  147. Miller RD. Anesthesia for the elderly. In: Miller RD, editor. Anesthesia. 2nd edition. New York: Churchill-Livingstone, 1986: 1801–18

    Google Scholar 

  148. Watson PE, Watson ID, Batt RD. Prediction of blood alcohol concentrations in human subjects: updating the Widmark Equation. J Stud Alcohol 1981; 42: 547–56

    PubMed  CAS  Google Scholar 

  149. Seidl S, Jensen U, Alt A. The calculation of blood ethanol concentrations in males and females. Int J Legal Med 2000; 114: 71–7

    Article  PubMed  CAS  Google Scholar 

  150. Lieber CS. Cytochrome P-4502E1: its physiological and pathological role. Physiol Rev 1997; 77: 517–44

    PubMed  CAS  Google Scholar 

  151. Lieber CS. Microsomal ethanol-oxidizing system (MEOS): the first 30 years (1968–1998): a review. Alcohol Clin Exp Res 1999; 23: 991–1007

    PubMed  CAS  Google Scholar 

  152. McGee RE, Ronis MJJ, Cowherd RM, et al. Characterization of cytochrome P450 2el induction in a rat hepatoma FGC-4 cell model by ethanol. Biochem Pharmacol 1994; 48: 1823–33

    Article  Google Scholar 

  153. Ronis MJJ, Ingelman-Sundberg M. Induction of human drugmetabolizing enzymes: mechanisms and implications. In: Woolf TF, editor. Handbook of drug metabolism. New York: Marcel Dekker Inc., 1999: 239–62

    Google Scholar 

  154. Schmitt G, Aderjan R, Keller T, et al. Ethyl glucuronide: an unusual ethanol metabolite in humans: synthesis, analytical data, and determination in serum and urine. J Anal Toxicol 1995; 19: 91–4

    PubMed  CAS  Google Scholar 

  155. Lieber CS. Hepatic, metabolic, and nutritional disorders of alcoholism: from pathogenesis to therapy. Crit Rev Clin Lab Sci 2000; 37: 551–84

    Article  PubMed  CAS  Google Scholar 

  156. Lieber CS. Alcohol: its metabolism and interaction with nutrients. Annu Rev Nutr 2000; 20: 395–430

    Article  PubMed  CAS  Google Scholar 

  157. Li TK, Yin SJ, Crabb DW, et al. Genetic and environmental influences on alcohol metabolism in humans. Alcohol Clin Exp Res 2001; 25: 136–44

    Article  PubMed  CAS  Google Scholar 

  158. Crabb DW, Bosron WF, Li TK. Ethanol metabolism. Pharmacol Ther 1987; 34: 59–73

    Article  PubMed  CAS  Google Scholar 

  159. Thomasson HR. Gender differences in alcohol metabolism: physiological responses to ethanol. Recent Dev Alcohol 1995; 12: 163–79

    Article  PubMed  CAS  Google Scholar 

  160. Mumenthaler MS, Taylor JL, O’Hara R, et al. Gender differences in moderate drinking effects. Alcohol Res Health 1999; 23: 55–64

    PubMed  CAS  Google Scholar 

  161. Whitfield JB, Martin NG. Alcohol consumption and alcohol pharmacokinetics: interactions within the normal population. Alcohol Clin Exp Res 1994; 18: 238–43

    Article  PubMed  CAS  Google Scholar 

  162. Li TK, Beard JD, Orr WE, et al. Genetic and ethnic differences in alcohol metabolism [abstract]. Alcohol Clin Exp Res 1998; 22: 771–2

    Article  Google Scholar 

  163. Kwo PY, Ramchandani VA, O’Connor S, et al. Gender differences in alcohol metabolism: relationship to liver volume and effect of adjusting for body mass. Gastroenterology 1998; 115: 1552–7

    Article  PubMed  CAS  Google Scholar 

  164. Eckardt MJ, File SE, Gessa GL, et al. Effects of moderate alcohol consumption on the central nervous system. Alcohol Clin Exp Res 1998; 22: 998–1040

    Article  PubMed  CAS  Google Scholar 

  165. Lumeng L, Bosron WF, Li TK. Quantitative correlation of ethanol elimination rates in vivo with liver alcohol dehydrogenase activities in fed, fasted and food-restricted rats. Biochem Pharmacol 1979; 28: 1547–51

    Article  PubMed  CAS  Google Scholar 

  166. Hahn RG, Norberg A, Gabrielsson J, et al. Eating a meal increases the clearance of ethanol given by intravenous infusion. Alcohol Alcohol 1994; 29: 673–7

    PubMed  CAS  Google Scholar 

  167. Bosron WF, Crabb DW, Housinger TA, et al. Effect of fasting on the activity and turnover of rat liver alcohol dehydrogenase. Alcohol Clin Exp Res 1984; 8: 196–200

    Article  PubMed  CAS  Google Scholar 

  168. Host U, Kelbaek H, Rasmusen M, et al. Haemodynamic effect of eating: the role of meal composition. Clin Sci 1996; 90: 269–76

    Google Scholar 

  169. Bombardiert G, Conti LR. Pathophysiology of liver circulation with an overview of medical and invasive treatments. Rays 1997; 22: 196–210

    Google Scholar 

  170. Kleber G, Steudel N, Behrmann C, et al. Hepatic arterial flow volume and reserve in patients with cirrhosis: use of intra-arterial Doppler and adenosine infusion. Gastroenterology 1999; 116: 906–14

    Article  PubMed  CAS  Google Scholar 

  171. Silva G, Fluxa F, Bresky G, et al. Splanchnic and systemic hemodynamics in early abstinence and after ethanol administration in non-cirrhotic alcoholic patients. J Hepatol 1994; 20: 494–9

    Article  PubMed  CAS  Google Scholar 

  172. Luca A, Garcia-Pagan JC, Bosch J, et al. Effects of ethanol consumption on hepatic hemodynamics in patients with alcoholic cirrhosis. Gastroenterology 1997; 112: 1284–9

    Article  PubMed  CAS  Google Scholar 

  173. Jones B, Kenward MG. Design and analysis of cross-over trials. London: Chapman and Hall, 1989

    Google Scholar 

  174. Bennett CA, Franklin NL. Statistical analysis in chemistry and the chemical industry. New York: Wiley, 1954

    Google Scholar 

  175. Wagner JG. Inter- and intrasubject variation of digoxin renal clearance in normal adult males. Drug Intell Clin Pharm 1988; 22: 562–7

    PubMed  CAS  Google Scholar 

  176. Rodbard D. Statistical quality control and routine data processing for radioimmunoassays and immunoradiometric assays. Clin Chem 1974; 20: 1255–70

    PubMed  CAS  Google Scholar 

  177. Bookbinder MJ, Panosian KJ. Correct and incorrect estimation of within-day and between-day variation. Clin Chem 1986; 32: 1734–7

    PubMed  CAS  Google Scholar 

  178. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; I: 307–10

    Article  Google Scholar 

  179. Pollock MA, Jefferson SG, Kane JW, et al. Method comparison: a different approach. Ann Clin Biochem 1992; 29: 556–60

    PubMed  CAS  Google Scholar 

  180. Hollis S. Analysis of method comparison studies. Ann Clin Biochem 1996; 33: 1–4

    PubMed  Google Scholar 

  181. Passananti GT, Wolff CA, Vesell ES. Reproducibility of individual rates of ethanol metabolism in fasting subjects. Clin Pharmacol Ther 1990; 47: 389–96

    Article  PubMed  CAS  Google Scholar 

  182. al-Lanqawi Y, Moreland TA, Ogg GD. Ethanol pharmacokinetics: reproducibility in volunteer subjects [abstract]. Br J Clin Pharmacol 1991; 32: 656

    Google Scholar 

  183. Zdolsek HJ, Sjoberg F, Lisander B, et al. The effect of hypermetabolism induced by burn trauma on the ethanol-oxidizing capacity of the liver. Crit Care Med 1999; 27: 2622–5

    Article  PubMed  CAS  Google Scholar 

  184. Kalow W, Ozdemir V, Tang BK, et al. The science of pharmacological variability: an essay. Clin Pharmacol Ther 1999; 66: 445–7

    Article  PubMed  CAS  Google Scholar 

  185. Kopun M, Propping P. The kinetics of ethanol absorption and elimination in twins and supplementary repetitive experiments in singleton subjects. Eur J Clin Pharmacol 1977; 11: 337–44

    Article  PubMed  CAS  Google Scholar 

  186. Martin NG, Perl J, Oakeshott JG, et al. A twin study of ethanol metabolism. Behav Genet 1985; 15: 93–109

    Article  PubMed  CAS  Google Scholar 

  187. Rogers J, Smith J, Starmer GA, et al. Differing effects of carbohydrate, fat and protein on the rate of ethanol metabolism. Alcohol Alcohol 1987; 22: 345–53

    PubMed  CAS  Google Scholar 

  188. Mascord D, Smith J, Starmer GA, et al. Effect of oral glucose on the rate of metabolism of ethanol in humans. Alcohol Alcohol 1988; 23: 365–70

    PubMed  CAS  Google Scholar 

  189. Kalant H, LeBlanc AE, Wilson A, et al. Sensorimotor and physiological effects of various alcoholic beverages. Can Med Assoc J 1975; 112: 953–8

    PubMed  CAS  Google Scholar 

  190. Waller PF. Epidemiology of alcohol-related accidents and the Grand Rapids study. Forensic Sci Rev 2000; 12: 108–18

    Google Scholar 

  191. Kechagias S, Jonsson KA, Norlander B, et al. Low-dose aspirin decreases blood alcohol concentrations by delaying gastric emptying. Eur J Clin Pharmacol 1997; 53: 241–6

    Article  PubMed  CAS  Google Scholar 

  192. Jones AW. Top ten defence challenges among drinking drivers in Sweden. Med Sci Law 1991; 31: 229–38

    PubMed  CAS  Google Scholar 

  193. Langford NJ, Marshall T, Ferner RE. The lacing defence: double blind study of thresholds for detecting addition of ethanol to drinks [letter]. BMJ 1999; 319: 1610

    Article  PubMed  CAS  Google Scholar 

  194. Friel PN, Logan BK, Baer J. An evaluation of the reliability of Widmark calculations based on breath alcohol measurements. J Forensic Sci 1995; 40: 91–4

    PubMed  CAS  Google Scholar 

  195. Lewis MJ. Blood alcohol: the concentration-time curve and retrospective estimation of level. J Forensic Sci Soc 1986; 26: 95–113

    Article  PubMed  CAS  Google Scholar 

  196. Wagner JG, Wilkinson PK, Ganes DA. Estimation of the amount of alcohol ingested from a single blood alcohol concentration. Alcohol Alcohol 1990; 25: 379–84

    PubMed  CAS  Google Scholar 

  197. Montgomery MR, Reasor MJ. Retrograde extrapolation of blood alcohol data: an applied approach. J Toxicol Environ Health 1992; 36: 281–92

    Article  PubMed  CAS  Google Scholar 

  198. Jones AW. Back-estimation of blood alcohol concentration. Br J Clin Pharmacol 1993; 35: 669–70

    Article  PubMed  CAS  Google Scholar 

  199. Lewis MJ. The individual and the estimation of his blood alcohol concentration from intake, with particular reference to the ‘hip-flask’ drink. J Forensic Sci Soc 1986; 26: 19–27

    Article  PubMed  CAS  Google Scholar 

  200. Stowell AR, Stowell LI. Estimation of blood alcohol concentrations after social drinking. J Forensic Sci 1998; 43: 14–21

    PubMed  CAS  Google Scholar 

  201. Winek CL, Wahba WW, Dowdell JL. Determination of absorption time of ethanol in social drinkers. Forensic Sci Int 1996; 77: 169–77

    Article  PubMed  CAS  Google Scholar 

  202. Holford NH. Complex PK/PD models: an alcoholic experience. Int J Clin Pharmacol Ther 1997; 35: 465–8

    PubMed  CAS  Google Scholar 

  203. Bogusz M, Pach J, Stasko W. Comparative studies on the rate of ethanol elimination in acute poisoning and in controlled conditions. J Forensic Sci 1977; 22: 446–51

    PubMed  CAS  Google Scholar 

  204. Jones AW, Sternebring B. Kinetics of ethanol and methanol in alcoholics during detoxification. Alcohol Alcohol 1992; 27: 641–7

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors have provided no information on sources of funding or on conflicts of interest directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan L. Gabrielsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norberg, Å., Jones, A.W., Hahn, R.G. et al. Role of Variability in Explaining Ethanol Pharmacokinetics. Clin Pharmacokinet 42, 1–31 (2003). https://doi.org/10.2165/00003088-200342010-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200342010-00001

Keywords

Navigation